
[Team ODUSSea] 1 of 10

Technical Design Paper for the 2018 RobotX

Competition

Joe Lemanksi, Andrea H. Robey, Javaud Ahangari, Ntiana Sakioti, Chris J. Lovin, and Michael Nilsen

Abstract—This paper is a description of hardware and

software design strategies implemented by Old Dominion

University’s Team ODUSSea for the 2018 Maritime RobotX

Challenge. The goals of this paper are to clearly outline the

team’s approach to converting their Unmanned Surface

Vehicle into an Autonomous Maritime System (AMS) intended

to perform the RobotX challenge tasks and to explain the

results of various testing for future teams.

I. INTRODUCTION

The purpose of this document is to explain the overall

design of Old Dominion University’s Autonomous Maritime

System (AMS). Design strategy is briefly examined,

followed by an in-depth discussion of hardware execution

and software system implementation. Approaches for both

Simulation and on water testing are also reviewed with

analysis and response to testing results.

II. DESIGN STRATEGY

The ODUs-Sea team took a requirements style approach

when determining the overall design of the USV system.

Each of the competition tasks were utilized to determine

design requirements and overall functionalities for each

subsystem component. There are seven subsystems; AI,

LiDAR, Guidance, Vision, Hydrophone, Payload Delivery,

and Hardware. For each RobotX Challenge Task a

subsystem task was created mapping to capabilities in each

of the subsystems. This produces specific features for the

design of clearly defined objectives for each subsystem. The

appendix shows the break-down of the Challenge Tasks

mapped to the Subsystem tasks, also containing a description

of each.

 The AI subsystem is the brain of the USV system and is

comprised of nested state machines. The base layer of the

state machine controls which challenge task the USV is

attempting to accomplish. For each of the features a separate

state machine is used to implement desired functionality.

This approach enables the reuse of sub-states in the different

Challenge Tasks. The drawback to using state machines for

implementing desired behavior to complete competition

tasks is the possibility of misconstrued environment

parameters leading to incorrect iterations through the states.

To mitigate these concerns intensive simulation tests under

multiple situations are being conducted to identify most of

the edge cases that could be encountered.

 The LiDAR subsystem is the primary component relied

upon for detecting environment objects. The sensor used is a

Velodyne VLP-16 which is mounted towards the front of the

boat. The subsystem uses the LiDAR points along with data

from the GPS and INS system to create an occupancy grid.

This grid is employed to identify different obstacles

according to certain size criteria. This approach is simple

which facilitates implementation and processing

requirements but could potentially lead to misidentification

of objects. In order to minimize this, great care is being taken

to filter out unwanted data and keep the criteria for

classification as specific as possible.

 The Guidance subsystem translates AI motion commands

to thrust and rotation values for each pontoon’s motor and

servo. The subsystem has three core modes: heading-speed,

line-following, and station-keeping. Though limited, this

approach satisfies USV motion desired to complete each

competition task.

 The Vision subsystem is the secondary source for

detecting obstacles, mainly focusing on color detection and

pattern recognition. The subsystem uses two GoPro Hero 6

Black cameras with two video encoders that stream video to

an independent computer for processing. The approach uses

the OpenCV library to find colors and patterns in the images

and perform depth mapping for object detection.

 The Hydrophone subsystem is designed to detect pings

from an underwater Pinger. There are several hardware

components that are utilized to filter and analyze the signals

before they are communicated to the AI subsystem. The

subsystem only reports values from the ping and is not

intended to perform decisions about signal source location or

desired direction. This approach allows system complexity

to remain in the AI, reducing potential logic issues.

 The Payload Delivery subsystem consists of a launcher

device with a software interface. This subsystem was

designed to propel a regulation racquet ball through a hole.

The approach is as follows, the interface takes an [x, y, z]

point from the perspective of the launcher which is used to

direct where the system is aiming. When commanded the

system would then fire. This once again allows the

complexity of determining the target location to remain in

the AI subsystem, where most of the processing and

decisions should occur.

 There are other supporting systems that provide GPS

and IMU data, fusing of the obstacles form vision and

LiDAR, and sending data to the control station. These will

be discussed in more detail in the next section.

III. VEHICLE DESIGN

This section outlines the hardware and software

components of the AMS. The hardware design encompasses

the WAM-V vessel, propulsion mechanisms, electronics,

launcher and all sensors included. The software sections

[Team ODUSSea] 2 of 10

involve deeper discussion of the AI System, control station,

GPS IMU, guidance system, all sensor software

implementation and simulation.

A. Hardware Design

The Hardware Design section details purpose and

installation of the main hardware components.

1) WAM-V Overview

Unmanned Surface Vehicles (USVs) have been developed to

perform a variety of missions such as payload delivery,

remote sensing, and surveillance in marine environments.

One such vessel is the Wave Adaptive Modular Vessel

(WAM-V) manufactured by Marine Advanced Research Inc.

Old Dominion University’s WAM-V was donated by the

Office of Naval Research (ONR) to promote advancement in

research of USV technology. The WAM-V is a modular

vessel that utilizes springs, shocks and ball joints to allow the

watercraft to adapt and conform to the surface of the water.

It has two inflatable pontoons that help absorb external

forces and improve transportability when deflated. Attached

to the pontoons by hinges, the engine pods are designed to

keep the propellers fully submerged always [1]. Combined,

the suspension, pontoons and hinged engine pods allow for a

stable platform, thus improving sensor data. The WAM-V

structure is illustrated in Figure 1 below.

Figure 1: Image of ODUSSea WAM-V on starboard side with view of

motor shafts.

2) Propulsion System

ODUSSea's thrust is produced by two Minn Kota trolling

motors placed at the ship's stern. The craft has two main

steering capabilities: differential thrust and servo control.

Differential thrust utilizes the motors factory ability to go in

reverse, one motor applying forward thrust and the other

reverse thrust, similar to how tanks drive. This mode of

movement reduces the turning radius and allows the craft to

essentially turn in place. Servo control is utilized at higher

speeds to make turns over a greater distance. The two Minn

Kota motors are rated for 80lbs of thrust each which gives

the craft an approximate top speed of 5 knots. When at these

higher velocities steering with servo control proves effective

but adds additional stress on the servos turning the motors.

According to a document created by one of ODU's senior

design teams, at 5 knots and 90 degrees of steering angle, the

motors and motor shafts are submitted to 11.828 Nm of

torque. To combat the added torque, Volz DH 30 servos are

used. According to the Volz DA 30 technical specifications,

at a rated 24V supply each servo produces 16 Nm of torque,

enough to fight the drag due to water resistance [2]. DA 30

servos also have a max travel angle of ±85° = 170° total

travel. To get the full range of motion ±90°, a 40 to 48

sprocket ratio is used. The motor shaft mount is aluminum

and is attached to the motor pods through six nuts, bolts,

rubber washers, and metal washers. The motor shaft itself is

attached to the motor shaft mount with shaft collars. The

chains are rated for 100lbs working strength to avoid

breakage during use. To attach the drive sprockets to the

servos, a Volz servo horn is used in addition to a 3D printed

carbon fiber adapter meant to attach the horn to the drive

sprockets hole pattern. The servos are mounted to the motor

pods with adjustable mounting holes for chain tensioning.

Driven sprockets have two clamping collars per,

sandwiching it with four screws and tightened to the motor

shaft with set screws. Current issues include chain derailing's

and loss of horn and drive sprocket assemblies.

3) Electronics

The computer processing units (CPUs) of the ODUSSea

WAM-V are secured to a sheet aluminum in a medium sized

pelican case. Main computing is done through a VIPER

board and Vision computing done through two LION boards.

The pelican case is a hard plastic and waterproof case that is

closed with clips. To keep the hardware cool and maintain

positive case pressure, the box has an air duct system that

utilized PVC piping and a blower fan. Both the inlet and exit

of the ducts are PVC 90s pointed downward to avoid the

entrance if water. Besides the blower and duct, there is a

120mm computer fan blowing directly over the hardware.

All case hardware as well as mechanization board hardware

is powered through a single 12V smart battery with a battery

protection circuit. The Vision computers have a regulator to

maintain proper voltage. An Ethernet injector is utilized to

supply power to our dual band router and is secured with a

3D printed case. Two HDMI to Ethernet h.264 encoders are

placed beside the computer fan on the cases top for convert

the HDMI video to stream. There are waterproof connectors

that feed any cables into holes in the case. Two motor control

boards control low level input to the servos and motor

controllers. An Ethernet switch below the encoders is used

to manage the different Ethernet wires from various systems.

 The mechanization board is placed at the front of the crafts

platform. The mechanization board handles movement of all

small servos as well as power for the light stack, launcher

motor, and vision cameras. To protect from rain or water

splash, the board is encased in a 3D printed box.

4) LiDAR Mount

To increase the field of view at close range a pivoting mount

is used for the Velodyne VLP-16 LiDAR. The mount

consists of a U-shaped bracket attached to a rod with

bearings. The rod has a stationary gear that the servo can

move the platform on. The system is setup to move the lidar

from a horizontal position to a 13.6-degrees angle downward

towards the front of the boat. This angle can be specified at

[Team ODUSSea] 3 of 10

0.1-degree increments. The main purpose of this is to view

the docking bay as the boat travels in. It is also being used to

increase the visibility at farther distances by moving the

LiDAR at 1-degree increments. The 16 lasers are 2 degrees

apart and moving the LiDAR by 1 degree can decreases the

gaps at farther ranges.

Figure 2: LiDAR Mount bracket shown in blue. It allows the system to

pivot from level to 13.6 degrees down.

5) Racquetball Launcher

The racquetball launcher is designed with the intent to

complete the Detect and Deliver task. This design

incorporates servo motors, and aluminum brackets that are

connected to achieve a ball launcher. The focus of this design

is to incorporate two wheels that spin to force the racquetball

out of the launcher. The design sits atop the front of the boat

and is attached to a pivoting arm and rotating base. The

rotating base gives the launcher rotation about its vertical

axis, to achieve left and right aiming. The pivoting arm

allows the launcher to tilt up or down depending on the angle

and distance the ball needs to travel. This design is a simple,

yet effective method of launching the blue racquetball

different distances. The launcher receives power and control

from the mechanization board. The AI subsystem is in

control of aiming the launcher through an algorithm that will

calculate the distance and height of the target. Also, the

vision cameras are incorporated to give the AI subsystem

guidance to where the target is. This system can recognize

the different sized targets and gives a depth perspective as to

how far the launcher is away.

6) Hydrophone

The USV is equipped with a hydrophone system that is used

to convert underwater acoustic pings into digital data. The

design employs three RESON TC 4013 Hydrophones, three

Digilent Wi-FIRE Microcontroller Boards, and an anti-

aliasing and filtering board. Together, components are

connected to create a system that will allow the USV to

identify entrance and exit gates. The hydrophone,

Microcontroller, and anti-alias board have the following

specifications that are important to the design of the

hydrophone detection system:

TABLE 1: HYDROPHONE TECHNICAL SPECIFICATIONS [3]

Frequency Range 1 Hz to 170 kHz

Receiving Sensitivity -211 dB ± 3dB re 1V/µPa

Nominal Capacitance 3.4 nF

Operating Depth 700 m

Impedance

Varied with Frequency:

2 kΩ @ 25kHz

1 kΩ @ 50 kHz

TABLE 2: MICROCONTROLLER TECHNICAL SPECIFICATIONS [4]

Processor PIC32MZ processor

Memory 2MB Flash – 512 kB RAM

Operating Speed 200 MHz

I/O Available 43 Pins

ADC Module 10-Bit

Networking Chip
Microchip MRF24WG0MA

WiFi module

TABLE 3: FILTERING BOARD TECHNICAL SPECIFICATIONS

Sampling Rate 100 KHz to 200 KHz

Filter Knee Frequency Start 40 KHz (-3dB)

Attenuation @ 60 KHz 20 dB or more

Amplification 20,30 dB (switchable)

The hydrophones connect to the anti-aliasing board

through standard Bayonet Neill-Concelman (BNC)

connectors. These three hydrophones are mounted to an arm

that will allow them to be submerged under water during the

gate detection tasks. The filtering board has three wire

outputs that connect to the Analog-to-Digital converters

(ADC) of the microcontrollers. The microcontrollers are

connected to the USV’s on-boat WiFi that allows for

communication between them and the main host CPU. The

anti-aliasing, filtering, and amplification board is responsible

for buffering and anti-aliasing of the captured data that feeds

into the microcontroller. This connection is important,

because the raw data that feeds into the boards is needs to be

processed before the connection to the microcontroller to

ensure safe operating voltage of 3.3V. Next, the three outputs

of the anti-aliasing filter board will directly connect to each

of the three microcontrollers ADCs. The microcontrollers are

the capturing and detection portion of the system and will be

collecting and saving data on a continuous buffer. Since the

beacon ping is 4 ms in length, sampling rates of 1000-1200

KHz will take less than 1024 samples to capture the entire

signal.

The design is enclosed in an aluminum box and sits atop

the USV platform. This enclose houses the microcontrollers

and anti-aliasing board. The three hydrophones are routed

out of the box and connected to the accompanying swing arm

on the bottom of the boat.

[Team ODUSSea] 4 of 10

7) Camera System

The two GoPro cameras are mounted on a single tube that

goes through the front pivot point of the WAM-V top

platform. The cameras are mounted 22 inches apart from lens

to lens and are powered by a USB 3.0 power cable that is

converted from the 12-volt power supply from the

electronics case. The video is sent via HDMI cable from the

cameras into h.264 encoders. The encoders use RJ45 cables

to stream the video over Ethernet to the Vision Computer.

The Vision computer is a Versa Logic Lion (VL-EPMe-42)

mounted within the computer case.

B. Software Design

The base of the software design was centered on the open

source Robot Operating System (ROS) Lunar pub-sub

framework [5]. Using this framework provided a common

architecture to facilitate communications between C++ and

Python development. ROS also provides many open source

modules that were used to speed up the development, testing,

and capability of the overall system. Based on the design

strategy of mapping Challenge Tasks to subsystem tasks a

set of core applications was identified. These subsystems had

specific functions within the overall framework. The general

functionalities included sensors that received data (LiDAR

point clouds, Video feeds, and GPS and IMU data), and

processed that data into useful messages, make decisions

based off task objectives, and control the vehicle to achieve

the task objectives. Figure 3 shows an overview of the

system architecture and the software architecture design.

1) AI

The AI/Strategy Planning subsystem is implemented using

the Python client library for ROS, SMACH, a Python library

to build hierarchical state machines, and SymPy, a Python

library for symbolic mathematics. A task file that lists the

desired order of competition task completion is utilized to

build the top-level state machine (SM), which controls the

order desired tasks are attempted. Each state of the top-level

SM is in turn another SM pertaining to each competition task

to be attempted. To increase modularity and allow

component reuse, core functionalities utilized in numerous

tasks are implemented using separate state machines, leading

to some task SMs to be nested state machines.

Functionalities reused in numerous tasks, for which

distinct state machines are created, include going through a

gate - required for both the “Demonstrate Navigation

Control” and “Entrance and Exit Gates” tasks, circling a

buoy/totem - required for both “Entrance and Exit Gates”

and “Identify Totems” tasks, driving to a waypoint -utilized

in all tasks, as well as performing obstacle avoidance which

is necessary throughout all operating areas. All task and core

functionality state machines and states follow a common

format, utilizing inputs from all peripheral modules - Vision,

LiDAR, Hydrophone, and GPS, and outputting necessary

information to the Guidance module to drive the boat

through the sub-tasks.

An important benefit of utilizing SMACH to build system

state machines is the graphical presentation tool smach

viewer. This tool can be and is used to validate and debug

state machines as it shows running state and sub-state

machines with all possible transitions, as well as current

active state and user data. It allows for real-time observation

of what state the USV is trying to accomplish. This

functionality is shown in Figure 5 below, which depicts two

separate state machines, one for the “Demonstrate

Navigation Control” task, and another testing the Guidance

module, the current state being “TestStationKeep”. These

two state machines make up the top-level state machine.

Figure 3: System Architecture and Software Architecture Design

[Team ODUSSea] 5 of 10

Figure 5: Smach viewer showing two connected state machines

2) Control Station

The USV control station is a QT, C++ based GUI that

provides an interface of the main functions and systems of

the boat. The control station was created with

implementation from the ROS network to allow both to work

concurrently. The main plugins of the control station allow

operators to see critical information from each system of the

USV in one screen. The categories include: position data, IP

address, networking information, competition heartbeat

connection, status modes of the boat, GPS lock display,

remote control data, battery levels and temperatures,

propulsion system data, and even detected objects from the

AI system. The control station is used as a feedback system

to the main controller of the boat.

The main window uses an RVIZ plugin that maps the boat

in a 3D grid using real-time position data from the various

on-board sensors. This function allows the operator to see the

boat in a virtual 3D world with actual information from real-

world.

The control station has a left pane with all the USVs vitals

and critical information. This pane holds all the on-board

system’s feedback in one place.

The first section holds the vessel’s current position data

pulled from the GPS IMU. This section includes a display of

GPS Lock, which shows if the boats on-board GPS have

locked to satellites or is still searching.

The vitals pane also shows feedback of the three system

batteries and their relative temperatures. This key

information allows the operator to alert when battery levels

are reaching low, or if any of the batteries are approaching

unsafe operating conditions. The next section includes

feedback from the remote control. The section shows the left

and right joysticks X, Y, and Z values as mapped from the

RC. Also, this section includes information on the mode the

USV is in including ready local, autonomous, line follow,

station keeping, etc.

The propulsion systems pane allows for display of a few

of the key components of the thrusting motors. This can

show steering angles, thrust, and humidity of the motor

servos. The humidity information is alike the battery

temperature, allowing a visual of unsafe conditions that

could harm our thrusting servos.

The last section of the pane shows display visuals from the

AI system. This section allows for three visual modes: boat

camera, overhead camera, and scene camera, that all show

the boat and virtual environment in different angles. This

section also includes detected objects from vision, fusion,

and lidar data. The operator can choose between the different

sets of objects and then see them in the RVIZ plugin with the

3D boat. This section is critical for showing all the detected

course objects that allow for different systems that use the

data to achieve competition tasks.

Figure 6: USV Virtual Environment

The control station also includes two graphing modes that

show motor feedback from systems that use the AI

autonomous tasks. The first graph is the velocity controller

responsible for graphing the USV’s actual speed, desired

speed, and thrust from the left and right motors. This graph

is key for showing the outputs of the autonomous mode that

controls the USV’s speed in all the AI tasks. The second

graph is the heading controller that maps the USV’s desired

heading, actual heading, desired heading rate, and actual

heading rate. This graph is responsible for showing the

outputs of the AI controllers when put in modes that require

the USV to lock to a certain heading, whether it be north,

south, …, or a combination of headings.

[Team ODUSSea] 6 of 10

Figure 7: Control Station Vitals Pane

3) Fusion

This subsystem receives sets of defined obstacle lists from

both the LiDAR and Vision subsystems. Based on some

simple correlation style rules it combines the two obstacle

lists into a single list. These types of rules include only

allowing color values to be specified by the Vision system.

Weigh averaging the location of close obstacles letting the

LiDAR’s location data to take precedence over the Visions

specified location.

4) GPS / IMU

The SBG Ellipse2-D duel antenna GNSS inertial sensor

provides the location and orientation information for the

USV system. This critical piece of the software design is

central and feeds almost all other subsystems to some degree

with information. The SBG Ellipse2-D provides 0.1o Roll

and pitch and 0.2o heading using the duel antenna GNSS

system. A ROS driver for the SBG Ellipse2-D is available

for the lunar ROS variant and was used to publish the data

from the RS 232 serial port on the main computer [6].

A GPS IMU node was created in ROS that subscribes to

the various messages from the SBG driver and publishes

various messages. The main message is our own version of

the vessel’s position, “ownship_pose” that provides Latitude

and Longitude, UTM Easting/Northing, speed over ground,

course over ground, yaw and velocity of yaw, roll, pitch,

yaw, magnitude velocity and x/y components, and finally

some information about the SBG ellipse state that includes

accuracy, number of space vehicles, and fix type. This node

also provides a ROS style transform (TF2) from the World

to region (which is static), and then a dynamic transform

within the local region. Most of the is processing occurs in

this regional space. This region is set the first time the system

reaches mode 4 meaning the Kalman filter inside the SBG

device is accurately calculating the position of the vehicle.

During simulation an SBG device is not present, and a

simulated system is used that was built in MATLAB

Simulink. This GPS SIM node interfaces with the Simulink

model to publish out the same information as the operational

node.

5) Guidance

The Guidance of ODUSSea is a translation between two

ROS Message types, High-Level and Low-Level Guidance.

The High-Level Guidance message specifies which guidance

mode the vessel will be operating in as well as defines

parameters specific to each mode. This information is

processed through a respective control system which

publishes the Low-Level Guidance in the form of percent

effort of the motors and motor steering angle. The High-

Level Guidance modes are used to define which control

system is actively publishing to the Low-Level Guidance, the

first of these control systems, is the Heading-Speed

Controller.

The Heading-Speed Controller, as its name suggests,

allows the vessel to navigate to and maintain a specified

heading at a specified velocity. This was achieved by two

separate feedback control loops. The velocity is controlled

by a single PID with static gains. The output of the velocity

controller defines the percent effort of both port and

starboard motors published to Low-Level Guidance. The

Heading controller uses a cascading feedback loop applied to

track, both the heading and the angular velocity of the vessel

with the use of PIDs. The cascading controller uses variable

gains for both heading and angular velocity PIDs these gains

are defined for medium and high speed; the values are then

interpolated based on the controllers desired speed. The

result of the Heading Controller is published as steering

angle for both the port and starboard motors. This method

allows for smooth correction of the vessel’s heading with

little to no oscillation or over shoot [7].

The Line Following control system calculates a desired

heading to guide the boat to a line defined by two waypoints.

The calculation is accomplished using methods like the

Vector Field Construction Algorithm described in Nelson,

Barber, McLain, and Beard 2006 [8]. To summarize, the

method resolves the waypoints and the position of the boat

into two vectors vector 1 being from waypoint 1 to the

position of the boat and vector 2 being from waypoint 1 to

waypoint 2. Then to calculate if the boat is behind waypoint

1 or past waypoint 2 it solves for the dot product of the two

[Team ODUSSea] 7 of 10

vectors and divides by the square of the geometric distance

from waypoint 1 to 2. If this calculation is negative the boat

is behind waypoint 1, if greater than one the boat has passed

waypoint 2, and if between 0 and 1 the boat is in the area

adjacent to the travel line. Next the algorithm must find the

boat’s location projected onto the line from waypoint 1 to

waypoint 2. The error is found by calculating the boat’s

distance from the desired path which is the geometric

distance from the boat’s position to the projected position on

the line. The side of the path the boat is travelling is

determined by calculating the cross-product of vector 1 and

vector 2, depending upon if the product is positive or

negative, we will know that the boat is on the right or left

respectively. Then using the calculated distance from the

path and a threshold variable distance that is set, pending

needed performance the equation (5) is employed.

θ = θ0 - ρθα (
𝑑

𝜏
)𝑘 (1)

Where θ is the desired heading, θ0 is the angle of the line

from waypoint 1 to waypoint 2, ρ is the sign of the dot

product described above, θa is the angle the boat follows

when the distance d is larger than the threshold distance τ, k

is a transition gain greater than 1.

Then using this heading, the control system calls on the

Heading Speed controller to provide the Low-Level

Guidance.

The Station-Keeping Control system uses a table of effort

and angle configurations that allow the vessel to travel in a

desired direction without affecting yaw. The configurations

are obtained by a brute force iterative calculation script that

cycles through every possible angle and effort to find a

setting that, using simple statics, provides a resulting force in

the desired direction and a moment of near zero. This table

is used when the vessel is a specified distance from the

station, However, when the boat is within the distance, the

controller then switches to heading control only, which is

accomplished with differential thrust with proportional

feedback control applied. A total of twelve configurations

were needed to cover the entire unit circle divided into 30-

degree sections. The calculations were simplified by the

assumption of symmetry, as well as the knowledge that

forward or reverse movement requires only forward and

reverse thrust reducing the number of needed configurations

to five. To allow for these configurations to control vehicle

heading, proportional feedback control is applied to the

effort of a single motor for each configuration, adjusting the

commanded effort a small amount.

6) Hydrophone

The hydrophone detection system includes three

microcontrollers that have on-board WiFi. Each of the three

boards is connected to the USV’s WiFi. This connection

allows for processed data from the microcontrollers to be

sent to the main host CPU and to the ROS network. The data

captured and processed from the hydrophones is sent over

UDP to the ROS network on a single node. This node is

responsible for sending the USV to all three entrance/exit

gates to determine the location of an active course beacon.

The hydrophones capture data on a continuous loop

and if no ping is detected, the end of the buffer is overwritten

by new incoming data. After a successful ping has occurred,

data is pulled from the buffer memory and sent over UDP

through the on-boat WiFi to the main host CPU. This CPU

will take care of the Fast Fourier Transform and processing

through the ROS network to give the USV information on

the amplitude of the signal ping captured.

7) LiDAR

The LiDAR subsystem is broken down into three separate

nodes. The first node is a ROS driver for the Velodyne VLP-

16 sensor to the PCL data type publisher [9]. The main

consumer of the LiDAR data is another node from ROS

called the OctoMap Server [10]. This node creates an

occupancy grid that is published and consumed by the

LiDAR obstacle Processor. This node produces a list of

defined obstacles for other subsystems to use in order to

make decisions depending on the current challenge task.

 The Velodyne driver node is configured to filter out

any returns that are closer than 2 meters. This reduces the

need to create a complex filter for angles that have blockages.

Such as the computer case, tray table, and antenna mount

poles.

 The OctoMap ROS is configured to filter out the

ground and any point that is 0.25 meters above the water

level of the WAM-V. The original ROS implementation was

intended to map a large area and keep the history for later

use. Our application has a requirement to deal with mobile

objects. This means that the original ROS node was modified

to incorporate decay into the occupied cells. The OctoMap

server uses a Log(odds) approach to calculate probabilities,

but only stores this value in each of the cells. There is a built-

in clamping function that is supposed to allow for a dynamic

environment letting empty voxels be removed by “miss” hits

on the previously occupied cells. In our case we get less

“miss” hits. This is because our environment has less return

than a typical land base system. To account for this issue a

manual decay function was added that subtracted some odds

value throughout each sensor scan. This value can still use

some tuning, but as of now is set to -0.25 per second of

occupied cells.

 Once an occupancy grid is determined the LiDAR

Obstacle Processing node uses both the 2D map and 3D

occupied cells list to identify specific types of obstacles. The

2D map is used in an OpenCV function to find circles and

return the specific radii values. This is then put through a

filter function that classifies the radii into different buoy

types. It also uses the 3D occupied cells list to filter for cells

in those areas and look for height characteristics. This is

enough information to classify the buoy type obstacles. A

similar type of approach is being employed to detect the

square obstacle types. Figure 8 shows an example of how the

system processes the raw LiDAR returns into an occupancy

grid and then classifies an obstacle.

[Team ODUSSea] 8 of 10

Figure 8: [left] raw lidar points, [middle] the occupancy grid built over

time from the raw points. [right] obstacle verified based on 2D map below

and height of occupied cells.

8) Vision

The Vision subsystem has three main functions; finding

totem colors and buoy locations, identifying the light pattern

for the scan the code task, and find the symbols for delivery

and dock tasks. OpenCV is used to accomplish each of these

functions.

To find the totem colors a color finding method is

used. This is a color search that looks for a group or blob of

pixels with a matching color. A simple UI with sliders is used

to tune the color value to be exact for each application

required by tasks. This is an indication of a buoy or totem. It

then uses a matching function that tags the item to a totem

color. This should account for different lighting conditions.

Once a location in the frame is found for both left and right

cameras a transformation function is called that performs the

depth estimation calculations. This method uses known

camera parameters (focal length, distance apart, and

calibration values) to calculate a distance of the object from

the cameras. Then, using the ROS TF function the objects

are mapped into the obstacle grid space. The scan the code

operation uses a function to look for changing colors in the

same location over multiple observations. Once a pattern is

recorded going through three different color states the system

sends out a message.

To identify symbols, templates were made of the

different shapes required; circle, triangle, and cruciform.

These templates are used to find matching patterns in the

current frames of video. The location in the image is used

similar to the totems and buoys function to convert the

location into the obstacle space. Known issues with the

system include finding objects behind other objects and

finding too many objects. To limit the chance of detecting

unnecessary objects, the resolution is halved.

9) Simulation

The goal of the simulator was to allow for the AI and other

sub systems to test without the need of having the physical

boat. This required the visualization of environment objects

such as the boat and totems in the simulator. The simulation

framework is based in ROS and comprised of four main

components: the environment simulator node, the GPS

simulator node, the MATLAB Simulink physics model of

the USV, and the LiDAR simulator.

 The environment simulation node uses a file

containing obstacles, their positions, wind data, and initial

boat position information. The node in turn publishes the

information to the applications which visualize the

environment and objects.

 The GPS simulation node was reviewed earlier, and

it connects to the MATLAB Simulink physics model to

publish the current USV position and transform information

to act the same as the GPS IMU node. It is important to note

that that roll and pitch are not currently simulated, but could

be added in the future.

 The MATLAB Simulink physics model uses a

physics tool box to create a realistic model of the boat. It

receives as input parameters that are similar to how the Low-

Level-Guidance values would be sent to the motors for

direction and speed. The model then produces an updated x,

y, yaw value that is published to the GPS simulation node to

update the position of the boat. The equations and drag

calculations were taken from live testing of the WAM-V on

the water to get a realistic boat movement.

 The LiDAR simulator has two different modes. One

mode provides a processor intensive simulation that uses

GAZEBO to simulate the physical world and has a simulated

Velodyne VLP 16 LiDAR that produces points similar to

how the real-world device would. This is very intensive and

not needed for most other subsystems. A second simulation

was created that utilizes the environment simulation values

directly and performs simple manipulations to ensure

behavior similar to the real processors. This includes filtering

for distance and changing of the type ever so often.

IV. EXPERIMENTAL TESTING AND RESULTS

The Experimental Testing and Results section describes the

approaches to testing of subsystems both in water and in the

simulated environment. Results of the tests are discussed and

analyzed and any failures and responses therein are also

mentioned.

1) Simulation Testing and Results Analysis

Most of the simulation work has been using the simple

version of the LiDAR simulation node. This testing was first

centered around getting the MATLAB Simulink physics

model to properly move the boat. Then the Guidance

subsystem went to work to test the High-Level Guidance

modes of head and speed control, line following, and station

keeping. Once that work was completed the AI simulations

started and that has been the bulk of the simulations.

Simulation testing was consistently conducted to test the

functionality of different subsystems before on-water testing

was attempted. In Simulation, the Guidance subsystem’s

separate controllers were tested until usability was ensured,

at which point on-water testing was used to perfect the

response of each controller, this was useful in correcting

Simulink model inaccuracies as well. The Station Keeping

control system in simulation shows the ability to maintain

within 5 meters of the station keeping point in sustained and

changing winds of up to 200 mph – an extreme case used to

test controller response.

[Team ODUSSea] 9 of 10

The processor intensive LiDAR simulation (VLP 16 Sim)

was heavily used to get an initial implementation of the

obstacle processing algorithm. This included creating a

realistic obstacle field using the environment simulation. The

VLP 16 Sim used the output of the environment simulation

to populate the GAZEBO world with realistically sized

buoys and totems. The VLP 16 Sim would output the

reflection of the simulated LiDAR off of the realistic

obstacles and return a cloud of points. These points are

realistic but the VLP 16 Sim was unable to exactly represent

the same point cloud that would be in the real world. The

VLP 16 driver node that covets the LiDAR point cloud from

the LiDAR frame to the region frame relies on the output of

the GPS IMU subsystem. In the VLP 16 Sim this did not

include the heave of the boat or any roll or pitch. The result

is a point cloud that was very stable and in the real world this

cloud should move over top of the obstacles more. This

insight was learned much later from the development of the

VLP 16 Sim, and in the future should be updated to add this

type of movement. Once the basic processing algorithm was

completed, recordings of live data from on water testing was

used.

During on water testing recordings of the LiDAR and GPS

IMU output were conducted. These recordings played an

important role in the completion of the LiDAR obstacle

processing algorithm as they were played back in real time

and slower to allow the fine tuning of the algorithm. These

playbacks showed how the movement of the boat over the

waves caused the LiDAR points to fill in the objects making

it easier to classify them.

This information gathered during simulation and on water

recordings for the LiDAR subsystem allowed for the fine

tuning of the simple simulation as well. The simple

simulation was tweaked so that obstacles wouldn’t appear in

the system until the boat was a certain distance away from

them. This allowed for the AI subsystem to get a better

simulation of what would happen in the real world.

The simple simulation has also been utilized to conduct

competition task implementation testing. So far,

implementation testing has only been conducted for the

“Demonstrate Navigation Control” task, as well as circling a

totem functionality needed for both the “Entrance and Exit

Gates” as well as the “Find Totems” task. Simulation

allowed for several different gate configurations as well as

starting USV positions to be tested, yielding successful

navigation results through both gates at all configurations

tested. Testing for the functionality of circling a totem is still

in progress. The gate totem configuration is utilized, with

USV attempting to circle the closest totem detected. So far,

functionality has not been validated, possibly due to logic

issues concerning the order of points the USV is trying to

navigate to circle the totem.

2) On Water Testing and Results Analysis

Approximately 6 on-water tests were conducted to test

different subsystem functionalities as well as competition

task implementation. Testing showed consistent LiDAR

object detection up to 30 meters. Using temporary RC

commands tailored to test the guidance subsystem

independently, the heading and speed, line-following, and

station-keeping control implementation was fine-tuned and

validated. The USV successfully navigated at numerous set

speed and heading values, as well various line-following

configurations. Station-keeping control also showed

satisfactory results at winds up to 11 mph. Lateral movement

configurations proved to be consistent with simulated results.

 Testing the LiDAR obstacle processing subsystem on

water allowed for tuning of the classification algorithm. It

also showed that there is still some tuning that can be done

to the GPS IMU subsystem. The Z value from the GPS is

mostly removed with the assumption that the heave of the

boat is minimal. It was found that at times this can vary

greatly and causes problems. This has been mostly filtered

out by increasing the ground plain filter to 0.25 meters above

the water. It was also observed that on windy days the waves

start to make returns and in calm waters the LiDAR can start

to pick up active fish and the anchor chain for the buoys. This

on water data also provided the recorded files needed to

playback and improve the classification algorithm as

mentioned in the simulation section.

 On-water testing was also conducted for the “Demonstrate

Navigation Control” qualifying task. Numerous runs issues

concerning LiDAR detection of the second gate were

revealed, requiring a time parameter increase while waiting

on totem detection. Course over-correction while going

through the second gate was also observed necessitating

intermediate course calculation. After the changes were

implemented, the USV effectively navigated through the set

of gates using numerous different starting positions and gate

orientations.

V. ACKNOWLEDGEMENTS

Team ODUSSea acknowledges the Old Dominion

University senior design teams in the Electrical and

Mechanical Engineering departments. The team also

acknowledges faculty and professional advisors Dr. Yannis

Papelis and Thomas Langhorne, respectively. Additionally,

the team recognizes Old Dominion University MSVE, SimIS

Inc., VMASC, Volz, SRC, and SIS for their generous

contributions.

VI. REFERENCES

[1] Marine Advanced Research. (2018). Marine Advanced

Research - 16' WAM-V USV. Available at:

http://www.wam-v.com/16-wam-v-usv

[2] "DA 30 Technical Specification." Volz Servos.

[3] Hydrophone TC4013 Miniature Reference

Hydrophone. Teledyne Marine. USA.

http://www.teledynemarine.com/reson-

tc4013?ProductLineID=48

[4] chipKIT Wi-FIRE Reference Manual. Diligent. USA.

https://reference.digilentinc.com/reference/microproces

sor/wi-fire/reference-manual

[5] Quigley, M. C. (2009). ROS: an open-source Robot

http://www.wam-v.com/16-wam-v-usv
https://reference.digilentinc.com/reference/microprocessor/wi-fire/reference-manual
https://reference.digilentinc.com/reference/microprocessor/wi-fire/reference-manual

[Team ODUSSea] 10 of 10

Operating System. Retrieved from wiki.ros.org:

http://www.willowgarage.com/papers/ros-open-source-

robot-operating-system

[6] Mézo, T. L. (n.d.). sbg_driver. Retrieved

fromwiki.ros.org: http://wiki.ros.org/sbg_driver

[7] Papelis, Y., Weate, M., 2013. Operations Architecture

and Vector Field Guidance for the Riverscout Subscale

Unmanned Surface Vehicle, Proceedings of the

International Defense and Homeland Security

Simulation Workshop 2013, Jan 13, Norfolk, VA,

USA.

[8] Nelson D.R., B. D. (2016, June 14-16). Vector Field

Path Following for small unmanned air vehichles.

[9] Jack O'Quin, P. B. (n.d.). velodyne_driver. Retrieved

from http://wiki.ros.org:

http://wiki.ros.org/velodyne_driver

[10] Cyrill, A. H. (2013). OctoMap: An Efficient

Probabilistic {3D} Mapping Framework Based.

Autonomous Robots.

VII. APPENDIX – CHALLENGE TASK BREAKDOWN

This appendix shows the mapping that was done from the

Challenge Tasks to the subsystem requirements.

http://www.willowgarage.com/papers/ros-open-source-robot-operating-system
http://www.willowgarage.com/papers/ros-open-source-robot-operating-system
http://wiki.ros.org/sbg_driver
http://wiki.ros.org/velodyne_driver

	I. Introduction
	II. Design Strategy
	III. Vehicle Design
	A. Hardware Design
	1) WAM-V Overview
	2) Propulsion System
	3) Electronics
	4) LiDAR Mount
	5) Racquetball Launcher
	6) Hydrophone
	7) Camera System

	B. Software Design
	1) AI
	2) Control Station
	3) Fusion
	4) GPS / IMU
	5) Guidance
	6) Hydrophone
	7) LiDAR
	8) Vision
	9) Simulation

	IV. Experimental Testing and Results
	1) Simulation Testing and Results Analysis
	2) On Water Testing and Results Analysis

	V. Acknowledgements
	VI. References
	VII. Appendix – Challenge Task Breakdown

