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Abstract—This paper is a description of hardware and 

software design strategies implemented by Old Dominion 

University’s Team ODUSSea for the 2018 Maritime RobotX 

Challenge. The goals of this paper are to clearly outline the 

team’s approach to converting their Unmanned Surface 

Vehicle into an Autonomous Maritime System (AMS) intended 

to perform the RobotX challenge tasks and to explain the 

results of various testing for future teams. 

I. INTRODUCTION 

The purpose of this document is to explain the overall 

design of Old Dominion University’s Autonomous Maritime 

System (AMS). Design strategy is briefly examined, 

followed by an in-depth discussion of hardware execution 

and software system implementation. Approaches for both 

Simulation and on water testing are also reviewed with 

analysis and response to testing results.  

II. DESIGN STRATEGY 

The ODUs-Sea team took a requirements style approach 

when determining the overall design of the USV system. 

Each of the competition tasks were utilized to determine 

design requirements and overall functionalities for each 

subsystem component.  There are seven subsystems; AI, 

LiDAR, Guidance, Vision, Hydrophone, Payload Delivery, 

and Hardware.  For each RobotX Challenge Task a 

subsystem task was created mapping to capabilities in each 

of the subsystems. This produces specific features for the 

design of clearly defined objectives for each subsystem. The 

appendix shows the break-down of the Challenge Tasks 

mapped to the Subsystem tasks, also containing a description 

of each. 

     The AI subsystem is the brain of the USV system and is 

comprised of nested state machines. The base layer of the 

state machine controls which challenge task the USV is 

attempting to accomplish. For each of the features a separate 

state machine is used to implement desired functionality. 

This approach enables the reuse of sub-states in the different 

Challenge Tasks. The drawback to using state machines for 

implementing desired behavior to complete competition 

tasks is the possibility of misconstrued environment 

parameters leading to incorrect iterations through the states. 

To mitigate these concerns intensive simulation tests under 

multiple situations are being conducted to identify most of 

the edge cases that could be encountered. 

     The LiDAR subsystem is the primary component relied 

upon for detecting environment objects. The sensor used is a 

Velodyne VLP-16 which is mounted towards the front of the 

boat. The subsystem uses the LiDAR points along with data 

from the GPS and INS system to create an occupancy grid. 

This grid is employed to identify different obstacles 

according to certain size criteria. This approach is simple 

which facilitates implementation and processing 

requirements but could potentially lead to misidentification 

of objects. In order to minimize this, great care is being taken 

to filter out unwanted data and keep the criteria for 

classification as specific as possible. 

     The Guidance subsystem translates AI motion commands 

to thrust and rotation values for each pontoon’s motor and 

servo. The subsystem has three core modes: heading-speed, 

line-following, and station-keeping. Though limited, this 

approach satisfies USV motion desired to complete each 

competition task.  

     The Vision subsystem is the secondary source for 

detecting obstacles, mainly focusing on color detection and 

pattern recognition. The subsystem uses two GoPro Hero 6 

Black cameras with two video encoders that stream video to 

an independent computer for processing. The approach uses 

the OpenCV library to find colors and patterns in the images 

and perform depth mapping for object detection.  

     The Hydrophone subsystem is designed to detect pings 

from an underwater Pinger. There are several hardware 

components that are utilized to filter and analyze the signals 

before they are communicated to the AI subsystem. The 

subsystem only reports values from the ping and is not 

intended to perform decisions about signal source location or 

desired direction. This approach allows system complexity 

to remain in the AI, reducing potential logic issues.  

      The Payload Delivery subsystem consists of a launcher 

device with a software interface. This subsystem was 

designed to propel a regulation racquet ball through a hole. 

The approach is as follows, the interface takes an [x, y, z] 

point from the perspective of the launcher which is used to 

direct where the system is aiming. When commanded the 

system would then fire.  This once again allows the 

complexity of determining the target location to remain in 

the AI subsystem, where most of the processing and 

decisions should occur. 

       There are other supporting systems that provide GPS 

and IMU data, fusing of the obstacles form vision and 

LiDAR, and sending data to the control station. These will 

be discussed in more detail in the next section.  

III. VEHICLE DESIGN 

This section outlines the hardware and software 

components of the AMS. The hardware design encompasses 

the WAM-V vessel, propulsion mechanisms, electronics, 

launcher and all sensors included. The software sections 
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involve deeper discussion of the AI System, control station, 

GPS IMU, guidance system, all sensor software 

implementation and simulation. 

A.  Hardware Design 

The Hardware Design section details purpose and 

installation of the main hardware components. 

 

1)  WAM-V Overview  

Unmanned Surface Vehicles (USVs) have been developed to 

perform a variety of missions such as payload delivery, 

remote sensing, and surveillance in marine environments. 

One such vessel is the Wave Adaptive Modular Vessel 

(WAM-V) manufactured by Marine Advanced Research Inc. 

Old Dominion University’s WAM-V was donated by the 

Office of Naval Research (ONR) to promote advancement in 

research of USV technology. The WAM-V is a modular 

vessel that utilizes springs, shocks and ball joints to allow the 

watercraft to adapt and conform to the surface of the water. 

It has two inflatable pontoons that help absorb external 

forces and improve transportability when deflated. Attached 

to the pontoons by hinges, the engine pods are designed to 

keep the propellers fully submerged always [1]. Combined, 

the suspension, pontoons and hinged engine pods allow for a 

stable platform, thus improving sensor data. The WAM-V 

structure is illustrated in Figure 1 below. 

 

 
Figure 1: Image of ODUSSea WAM-V on starboard side with view of 

motor shafts. 

 

2)  Propulsion System 

ODUSSea's thrust is produced by two Minn Kota trolling 

motors placed at the ship's stern. The craft has two main 

steering capabilities: differential thrust and servo control. 

Differential thrust utilizes the motors factory ability to go in 

reverse, one motor applying forward thrust and the other 

reverse thrust, similar to how tanks drive. This mode of 

movement reduces the turning radius and allows the craft to 

essentially turn in place. Servo control is utilized at higher 

speeds to make turns over a greater distance. The two Minn 

Kota motors are rated for 80lbs of thrust each which gives 

the craft an approximate top speed of 5 knots. When at these 

higher velocities steering with servo control proves effective 

but adds additional stress on the servos turning the motors. 

According to a document created by one of ODU's senior 

design teams, at 5 knots and 90 degrees of steering angle, the 

motors and motor shafts are submitted to 11.828 Nm of 

torque. To combat the added torque, Volz DH 30 servos are 

used. According to the Volz DA 30 technical specifications, 

at a rated 24V supply each servo produces 16 Nm of torque, 

enough to fight the drag due to water resistance [2]. DA 30 

servos also have a max travel angle of ±85° = 170° total 

travel. To get the full range of motion ±90°, a 40 to 48 

sprocket ratio is used. The motor shaft mount is aluminum 

and is attached to the motor pods through six nuts, bolts, 

rubber washers, and metal washers. The motor shaft itself is 

attached to the motor shaft mount with shaft collars. The 

chains are rated for 100lbs working strength to avoid 

breakage during use. To attach the drive sprockets to the 

servos, a Volz servo horn is used in addition to a 3D printed 

carbon fiber adapter meant to attach the horn to the drive 

sprockets hole pattern. The servos are mounted to the motor 

pods with adjustable mounting holes for chain tensioning. 

Driven sprockets have two clamping collars per, 

sandwiching it with four screws and tightened to the motor 

shaft with set screws. Current issues include chain derailing's 

and loss of horn and drive sprocket assemblies. 

 

3)  Electronics  

The computer processing units (CPUs) of the ODUSSea 

WAM-V are secured to a sheet aluminum in a medium sized 

pelican case. Main computing is done through a VIPER 

board and Vision computing done through two LION boards. 

The pelican case is a hard plastic and waterproof case that is 

closed with clips. To keep the hardware cool and maintain 

positive case pressure, the box has an air duct system that 

utilized PVC piping and a blower fan. Both the inlet and exit 

of the ducts are PVC 90s pointed downward to avoid the 

entrance if water. Besides the blower and duct, there is a 

120mm computer fan blowing directly over the hardware. 

All case hardware as well as mechanization board hardware 

is powered through a single 12V smart battery with a battery 

protection circuit. The Vision computers have a regulator to 

maintain proper voltage. An Ethernet injector is utilized to 

supply power to our dual band router and is secured with a 

3D printed case. Two HDMI to Ethernet h.264 encoders are 

placed beside the computer fan on the cases top for convert 

the HDMI video to stream. There are waterproof connectors 

that feed any cables into holes in the case. Two motor control 

boards control low level input to the servos and motor 

controllers. An Ethernet switch below the encoders is used 

to manage the different Ethernet wires from various systems.  

    The mechanization board is placed at the front of the crafts 

platform. The mechanization board handles movement of all 

small servos as well as power for the light stack, launcher 

motor, and vision cameras. To protect from rain or water 

splash, the board is encased in a 3D printed box. 

 

4)  LiDAR Mount 

To increase the field of view at close range a pivoting mount 

is used for the Velodyne VLP-16 LiDAR. The mount 

consists of a U-shaped bracket attached to a rod with 

bearings. The rod has a stationary gear that the servo can 

move the platform on. The system is setup to move the lidar 

from a horizontal position to a 13.6-degrees angle downward 

towards the front of the boat. This angle can be specified at 
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0.1-degree increments. The main purpose of this is to view 

the docking bay as the boat travels in. It is also being used to 

increase the visibility at farther distances by moving the 

LiDAR at 1-degree increments. The 16 lasers are 2 degrees 

apart and moving the LiDAR by 1 degree can decreases the 

gaps at farther ranges. 

 
Figure 2: LiDAR Mount bracket shown in blue. It allows the system to 

pivot from level to 13.6 degrees down. 

5)  Racquetball Launcher 

The racquetball launcher is designed with the intent to 

complete the Detect and Deliver task. This design 

incorporates servo motors, and aluminum brackets that are 

connected to achieve a ball launcher. The focus of this design 

is to incorporate two wheels that spin to force the racquetball 

out of the launcher. The design sits atop the front of the boat 

and is attached to a pivoting arm and rotating base. The 

rotating base gives the launcher rotation about its vertical 

axis, to achieve left and right aiming. The pivoting arm 

allows the launcher to tilt up or down depending on the angle 

and distance the ball needs to travel. This design is a simple, 

yet effective method of launching the blue racquetball 

different distances. The launcher receives power and control 

from the mechanization board. The AI subsystem is in 

control of aiming the launcher through an algorithm that will 

calculate the distance and height of the target. Also, the 

vision cameras are incorporated to give the AI subsystem 

guidance to where the target is. This system can recognize 

the different sized targets and gives a depth perspective as to 

how far the launcher is away. 

 

6)  Hydrophone 

The USV is equipped with a hydrophone system that is used 

to convert underwater acoustic pings into digital data. The 

design employs three RESON TC 4013 Hydrophones, three 

Digilent Wi-FIRE Microcontroller Boards, and an anti-

aliasing and filtering board. Together, components are 

connected to create a system that will allow the USV to 

identify entrance and exit gates. The hydrophone, 

Microcontroller, and anti-alias board have the following 

specifications that are important to the design of the 

hydrophone detection system:  

 
TABLE 1: HYDROPHONE TECHNICAL SPECIFICATIONS [3] 

Frequency Range 1 Hz to 170 kHz 

Receiving Sensitivity -211 dB ± 3dB re 1V/µPa 

Nominal Capacitance 3.4 nF 

Operating Depth 700 m 

Impedance 

Varied with Frequency: 

2 kΩ @ 25kHz 

1 kΩ @ 50 kHz 

 
TABLE 2: MICROCONTROLLER TECHNICAL SPECIFICATIONS [4] 

Processor PIC32MZ processor 

Memory 2MB Flash – 512 kB RAM 

Operating Speed 200 MHz 

I/O Available 43 Pins 

ADC Module 10-Bit 

Networking Chip 
Microchip MRF24WG0MA 

WiFi module 

 
TABLE 3: FILTERING BOARD TECHNICAL SPECIFICATIONS 

Sampling Rate 100 KHz to 200 KHz 

Filter Knee Frequency Start 40 KHz (-3dB) 

Attenuation @ 60 KHz  20 dB or more 

Amplification 20,30 dB (switchable) 

 

The hydrophones connect to the anti-aliasing board 

through standard Bayonet Neill-Concelman (BNC) 

connectors. These three hydrophones are mounted to an arm 

that will allow them to be submerged under water during the 

gate detection tasks.  The filtering board has three wire 

outputs that connect to the Analog-to-Digital converters 

(ADC) of the microcontrollers. The microcontrollers are 

connected to the USV’s on-boat WiFi that allows for 

communication between them and the main host CPU. The 

anti-aliasing, filtering, and amplification board is responsible 

for buffering and anti-aliasing of the captured data that feeds 

into the microcontroller. This connection is important, 

because the raw data that feeds into the boards is needs to be 

processed before the connection to the microcontroller to 

ensure safe operating voltage of 3.3V. Next, the three outputs 

of the anti-aliasing filter board will directly connect to each 

of the three microcontrollers ADCs. The microcontrollers are 

the capturing and detection portion of the system and will be 

collecting and saving data on a continuous buffer. Since the 

beacon ping is 4 ms in length, sampling rates of 1000-1200 

KHz will take less than 1024 samples to capture the entire 

signal.  

The design is enclosed in an aluminum box and sits atop 

the USV platform. This enclose houses the microcontrollers 

and anti-aliasing board. The three hydrophones are routed 

out of the box and connected to the accompanying swing arm 

on the bottom of the boat. 
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7) Camera System 

The two GoPro cameras are mounted on a single tube that 

goes through the front pivot point of the WAM-V top 

platform. The cameras are mounted 22 inches apart from lens 

to lens and are powered by a USB 3.0 power cable that is 

converted from the 12-volt power supply from the 

electronics case. The video is sent via HDMI cable from the 

cameras into h.264 encoders. The encoders use RJ45 cables 

to stream the video over Ethernet to the Vision Computer. 

The Vision computer is a Versa Logic Lion (VL-EPMe-42) 

mounted within the computer case. 

B.  Software Design 

The base of the software design was centered on the open 

source Robot Operating System (ROS) Lunar pub-sub 

framework [5]. Using this framework provided a common 

architecture to facilitate communications between C++ and 

Python development. ROS also provides many open source 

modules that were used to speed up the development, testing, 

and capability of the overall system.  Based on the design 

strategy of mapping Challenge Tasks to subsystem tasks a 

set of core applications was identified. These subsystems had 

specific functions within the overall framework. The general 

functionalities included sensors that received data (LiDAR 

point clouds, Video feeds, and GPS and IMU data), and 

processed that data into useful messages, make decisions 

based off task objectives, and control the vehicle to achieve 

the task objectives.  Figure 3 shows an overview of the 

system architecture and the software architecture design. 

 

1)  AI  

The AI/Strategy Planning subsystem is implemented using 

the Python client library for ROS, SMACH, a Python library 

to build hierarchical state machines, and SymPy, a Python 

library for symbolic mathematics. A task file that lists the 

desired order of competition task completion is utilized to 

build the top-level state machine (SM), which controls the 

order desired tasks are attempted. Each state of the top-level 

SM is in turn another SM pertaining to each competition task 

to be attempted. To increase modularity and allow 

component reuse, core functionalities utilized in numerous 

tasks are implemented using separate state machines, leading 

to some task SMs to be nested state machines.   

Functionalities reused in numerous tasks, for which 

distinct state machines are created, include going through a 

gate - required for both the “Demonstrate Navigation 

Control” and “Entrance and Exit Gates” tasks, circling a 

buoy/totem - required for both “Entrance and Exit Gates” 

and “Identify Totems” tasks, driving to a waypoint -utilized 

in all tasks, as well as performing obstacle avoidance which 

is necessary throughout all operating areas. All task and core 

functionality state machines and states follow a common 

format, utilizing inputs from all peripheral modules - Vision, 

LiDAR, Hydrophone, and GPS, and outputting necessary 

information to the Guidance module to drive the boat 

through the sub-tasks. 

An important benefit of utilizing SMACH to build system 

state machines is the graphical presentation tool smach 

viewer. This tool can be and is used to validate and debug 

state machines as it shows running state and sub-state 

machines with all possible transitions, as well as current 

active state and user data. It allows for real-time observation 

of what state the USV is trying to accomplish. This 

functionality is shown in Figure 5 below, which depicts two 

separate state machines, one for the “Demonstrate 

Navigation Control” task, and another testing the Guidance 

module, the current state being “TestStationKeep”. These 

two state machines make up the top-level state machine. 

 

Figure 3: System Architecture and Software Architecture Design 
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Figure 5: Smach viewer showing two connected state machines 

2)  Control Station 

The USV control station is a QT, C++ based GUI that 

provides an interface of the main functions and systems of 

the boat. The control station was created with 

implementation from the ROS network to allow both to work 

concurrently. The main plugins of the control station allow 

operators to see critical information from each system of the 

USV in one screen. The categories include: position data, IP 

address, networking information, competition heartbeat 

connection, status modes of the boat, GPS lock display, 

remote control data, battery levels and temperatures, 

propulsion system data, and even detected objects from the 

AI system. The control station is used as a feedback system 

to the main controller of the boat.  

The main window uses an RVIZ plugin that maps the boat 

in a 3D grid using real-time position data from the various 

on-board sensors. This function allows the operator to see the 

boat in a virtual 3D world with actual information from real-

world.  

The control station has a left pane with all the USVs vitals 

and critical information. This pane holds all the on-board 

system’s feedback in one place.  

The first section holds the vessel’s current position data 

pulled from the GPS IMU. This section includes a display of 

GPS Lock, which shows if the boats on-board GPS have 

locked to satellites or is still searching.  

The vitals pane also shows feedback of the three system 

batteries and their relative temperatures. This key 

information allows the operator to alert when battery levels 

are reaching low, or if any of the batteries are approaching 

unsafe operating conditions. The next section includes 

feedback from the remote control. The section shows the left 

and right joysticks X, Y, and Z values as mapped from the 

RC. Also, this section includes information on the mode the 

USV is in including ready local, autonomous, line follow, 

station keeping, etc.  

The propulsion systems pane allows for display of a few 

of the key components of the thrusting motors. This can 

show steering angles, thrust, and humidity of the motor 

servos. The humidity information is alike the battery 

temperature, allowing a visual of unsafe conditions that 

could harm our thrusting servos.  

The last section of the pane shows display visuals from the 

AI system. This section allows for three visual modes: boat 

camera, overhead camera, and scene camera, that all show 

the boat and virtual environment in different angles. This 

section also includes detected objects from vision, fusion, 

and lidar data. The operator can choose between the different 

sets of objects and then see them in the RVIZ plugin with the 

3D boat. This section is critical for showing all the detected 

course objects that allow for different systems that use the 

data to achieve competition tasks.  

 

 
Figure 6: USV Virtual Environment 

The control station also includes two graphing modes that 

show motor feedback from systems that use the AI 

autonomous tasks. The first graph is the velocity controller 

responsible for graphing the USV’s actual speed, desired 

speed, and thrust from the left and right motors. This graph 

is key for showing the outputs of the autonomous mode that 

controls the USV’s speed in all the AI tasks. The second 

graph is the heading controller that maps the USV’s desired 

heading, actual heading, desired heading rate, and actual 

heading rate. This graph is responsible for showing the 

outputs of the AI controllers when put in modes that require 

the USV to lock to a certain heading, whether it be north, 

south, …, or a combination of headings. 
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Figure 7: Control Station Vitals Pane 

 

3)  Fusion 

This subsystem receives sets of defined obstacle lists from 

both the LiDAR and Vision subsystems. Based on some 

simple correlation style rules it combines the two obstacle 

lists into a single list. These types of rules include only 

allowing color values to be specified by the Vision system. 

Weigh averaging the location of close obstacles letting the 

LiDAR’s location data to take precedence over the Visions 

specified location.   

 

4)  GPS / IMU  

The SBG Ellipse2-D duel antenna GNSS inertial sensor 

provides the location and orientation information for the 

USV system. This critical piece of the software design is 

central and feeds almost all other subsystems to some degree 

with information. The SBG Ellipse2-D provides 0.1o Roll 

and pitch and 0.2o heading using the duel antenna GNSS 

system.  A ROS driver for the SBG Ellipse2-D is available 

for the lunar ROS variant and was used to publish the data 

from the RS 232 serial port on the main computer [6].  

A GPS IMU node was created in ROS that subscribes to 

the various messages from the SBG driver and publishes 

various messages. The main message is our own version of 

the vessel’s position, “ownship_pose” that provides Latitude 

and Longitude, UTM Easting/Northing, speed over ground, 

course over ground, yaw and velocity of yaw, roll, pitch, 

yaw, magnitude velocity and x/y components, and finally 

some information about the SBG ellipse state that includes 

accuracy, number of space vehicles, and fix type. This node 

also provides a ROS style transform (TF2) from the World 

to region (which is static), and then a dynamic transform 

within the local region. Most of the is processing occurs in 

this regional space. This region is set the first time the system 

reaches mode 4 meaning the Kalman filter inside the SBG 

device is accurately calculating the position of the vehicle. 

During simulation an SBG device is not present, and a 

simulated system is used that was built in MATLAB 

Simulink. This GPS SIM node interfaces with the Simulink 

model to publish out the same information as the operational 

node.     

 

5)  Guidance 

The Guidance of ODUSSea is a translation between two 

ROS Message types, High-Level and Low-Level Guidance. 

The High-Level Guidance message specifies which guidance 

mode the vessel will be operating in as well as defines 

parameters specific to each mode. This information is 

processed through a respective control system which 

publishes the Low-Level Guidance in the form of percent 

effort of the motors and motor steering angle. The High-

Level Guidance modes are used to define which control 

system is actively publishing to the Low-Level Guidance, the 

first of these control systems, is the Heading-Speed 

Controller. 

The Heading-Speed Controller, as its name suggests, 

allows the vessel to navigate to and maintain a specified 

heading at a specified velocity. This was achieved by two 

separate feedback control loops. The velocity is controlled 

by a single PID with static gains. The output of the velocity 

controller defines the percent effort of both port and 

starboard motors published to Low-Level Guidance. The 

Heading controller uses a cascading feedback loop applied to 

track, both the heading and the angular velocity of the vessel 

with the use of PIDs. The cascading controller uses variable 

gains for both heading and angular velocity PIDs these gains 

are defined for medium and high speed; the values are then 

interpolated based on the controllers desired speed. The 

result of the Heading Controller is published as steering 

angle for both the port and starboard motors.   This method 

allows for smooth correction of the vessel’s heading with 

little to no oscillation or over shoot [7]. 

The Line Following control system calculates a desired 

heading to guide the boat to a line defined by two waypoints. 

The calculation is accomplished using methods like the 

Vector Field Construction Algorithm described in Nelson, 

Barber, McLain, and Beard 2006 [8]. To summarize, the 

method resolves the waypoints and the position of the boat 

into two vectors vector 1 being from waypoint 1 to the 

position of the boat and vector 2 being from waypoint 1 to 

waypoint 2. Then to calculate if the boat is behind waypoint 

1 or past waypoint 2 it solves for the dot product of the two 
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vectors and divides by the square of the geometric distance 

from waypoint 1 to 2. If this calculation is negative the boat 

is behind waypoint 1, if greater than one the boat has passed 

waypoint 2, and if between 0 and 1 the boat is in the area 

adjacent to the travel line. Next the algorithm must find the 

boat’s location projected onto the line from waypoint 1 to 

waypoint 2. The error is found by calculating the boat’s 

distance from the desired path which is the geometric 

distance from the boat’s position to the projected position on 

the line. The side of the path the boat is travelling is 

determined by calculating the cross-product of vector 1 and 

vector 2, depending upon if the product is positive or 

negative, we will know that the boat is on the right or left 

respectively. Then using the calculated distance from the 

path and a threshold variable distance that is set, pending 

needed performance the equation (5) is employed. 

θ = θ0 - ρθα (
𝑑

𝜏
)𝑘  (1)                                          

Where θ is the desired heading, θ0 is the angle of the line 

from waypoint 1 to waypoint 2, ρ is the sign of the dot 

product described above, θa is the angle the boat follows 

when the distance d is larger than the threshold distance τ, k 

is a transition gain greater than 1. 

Then using this heading, the control system calls on the 

Heading Speed controller to provide the Low-Level 

Guidance. 

The Station-Keeping Control system uses a table of effort 

and angle configurations that allow the vessel to travel in a 

desired direction without affecting yaw. The configurations 

are obtained by a brute force iterative calculation script that 

cycles through every possible angle and effort to find a 

setting that, using simple statics, provides a resulting force in 

the desired direction and a moment of near zero. This table 

is used when the vessel is a specified distance from the 

station, However, when the boat is within the distance, the 

controller then switches to heading control only, which is 

accomplished with differential thrust with proportional 

feedback control applied. A total of twelve configurations 

were needed to cover the entire unit circle divided into 30-

degree sections. The calculations were simplified by the 

assumption of symmetry, as well as the knowledge that 

forward or reverse movement requires only forward and 

reverse thrust reducing the number of needed configurations 

to five. To allow for these configurations to control vehicle 

heading, proportional feedback control is applied to the 

effort of a single motor for each configuration, adjusting the 

commanded effort a small amount. 

 

6)  Hydrophone  

The hydrophone detection system includes three 

microcontrollers that have on-board WiFi. Each of the three 

boards is connected to the USV’s WiFi. This connection 

allows for processed data from the microcontrollers to be 

sent to the main host CPU and to the ROS network. The data 

captured and processed from the hydrophones is sent over 

UDP to the ROS network on a single node. This node is 

responsible for sending the USV to all three entrance/exit 

gates to determine the location of an active course beacon.  

The hydrophones capture data on a continuous loop 

and if no ping is detected, the end of the buffer is overwritten 

by new incoming data. After a successful ping has occurred, 

data is pulled from the buffer memory and sent over UDP 

through the on-boat WiFi to the main host CPU. This CPU 

will take care of the Fast Fourier Transform and processing 

through the ROS network to give the USV information on 

the amplitude of the signal ping captured.  

 

7)  LiDAR 

The LiDAR subsystem is broken down into three separate 

nodes. The first node is a ROS driver for the Velodyne VLP-

16 sensor to the PCL data type publisher [9]. The main 

consumer of the LiDAR data is another node from ROS 

called the OctoMap Server [10]. This node creates an 

occupancy grid that is published and consumed by the 

LiDAR obstacle Processor. This node produces a list of 

defined obstacles for other subsystems to use in order to 

make decisions depending on the current challenge task. 

 The Velodyne driver node is configured to filter out 

any returns that are closer than 2 meters. This reduces the 

need to create a complex filter for angles that have blockages. 

Such as the computer case, tray table, and antenna mount 

poles.  

 The OctoMap ROS is configured to filter out the 

ground and any point that is 0.25 meters above the water 

level of the WAM-V.  The original ROS implementation was 

intended to map a large area and keep the history for later 

use. Our application has a requirement to deal with mobile 

objects. This means that the original ROS node was modified 

to incorporate decay into the occupied cells. The OctoMap 

server uses a Log(odds) approach to calculate probabilities, 

but only stores this value in each of the cells. There is a built-

in clamping function that is supposed to allow for a dynamic 

environment letting empty voxels be removed by “miss” hits 

on the previously occupied cells. In our case we get less 

“miss” hits. This is because our environment has less return 

than a typical land base system. To account for this issue a 

manual decay function was added that subtracted some odds 

value throughout each sensor scan. This value can still use 

some tuning, but as of now is set to -0.25 per second of 

occupied cells.  

 Once an occupancy grid is determined the LiDAR 

Obstacle Processing node uses both the 2D map and 3D 

occupied cells list to identify specific types of obstacles. The 

2D map is used in an OpenCV function to find circles and 

return the specific radii values. This is then put through a 

filter function that classifies the radii into different buoy 

types. It also uses the 3D occupied cells list to filter for cells 

in those areas and look for height characteristics. This is 

enough information to classify the buoy type obstacles. A 

similar type of approach is being employed to detect the 

square obstacle types. Figure 8 shows an example of how the 

system processes the raw LiDAR returns into an occupancy 

grid and then classifies an obstacle. 
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Figure 8: [left] raw lidar points, [middle] the occupancy grid built over 

time from the raw points. [right] obstacle verified based on 2D map below 

and height of occupied cells. 

8)  Vision 

The Vision subsystem has three main functions; finding 

totem colors and buoy locations, identifying the light pattern 

for the scan the code task, and find the symbols for delivery 

and dock tasks. OpenCV is used to accomplish each of these 

functions.   

To find the totem colors a color finding method is 

used. This is a color search that looks for a group or blob of 

pixels with a matching color. A simple UI with sliders is used 

to tune the color value to be exact for each application 

required by tasks. This is an indication of a buoy or totem. It 

then uses a matching function that tags the item to a totem 

color. This should account for different lighting conditions.  

Once a location in the frame is found for both left and right 

cameras a transformation function is called that performs the 

depth estimation calculations. This method uses known 

camera parameters (focal length, distance apart, and 

calibration values) to calculate a distance of the object from 

the cameras. Then, using the ROS TF function the objects 

are mapped into the obstacle grid space.  The scan the code 

operation uses a function to look for changing colors in the 

same location over multiple observations.  Once a pattern is 

recorded going through three different color states the system 

sends out a message.   

To identify symbols, templates were made of the 

different shapes required; circle, triangle, and cruciform. 

These templates are used to find matching patterns in the 

current frames of video. The location in the image is used 

similar to the totems and buoys function to convert the 

location into the obstacle space. Known issues with the 

system include finding objects behind other objects and 

finding too many objects. To limit the chance of detecting 

unnecessary objects, the resolution is halved.     

 

9) Simulation 

The goal of the simulator was to allow for the AI and other 

sub systems to test without the need of having the physical 

boat. This required the visualization of environment objects 

such as the boat and totems in the simulator. The simulation 

framework is based in ROS and comprised of four main 

components: the environment simulator node, the GPS 

simulator node, the MATLAB Simulink physics model of 

the USV, and the LiDAR simulator.  

 The environment simulation node uses a file 

containing obstacles, their positions, wind data, and initial 

boat position information. The node in turn publishes the 

information to the applications which visualize the 

environment and objects. 

 The GPS simulation node was reviewed earlier, and 

it connects to the MATLAB Simulink physics model to 

publish the current USV position and transform information 

to act the same as the GPS IMU node. It is important to note 

that that roll and pitch are not currently simulated, but could 

be added in the future.  

 The MATLAB Simulink physics model uses a 

physics tool box to create a realistic model of the boat. It 

receives as input parameters that are similar to how the Low-

Level-Guidance values would be sent to the motors for 

direction and speed. The model then produces an updated x, 

y, yaw value that is published to the GPS simulation node to 

update the position of the boat. The equations and drag 

calculations were taken from live testing of the WAM-V on 

the water to get a realistic boat movement.  

 The LiDAR simulator has two different modes. One 

mode provides a processor intensive simulation that uses 

GAZEBO to simulate the physical world and has a simulated 

Velodyne VLP 16 LiDAR that produces points similar to 

how the real-world device would. This is very intensive and 

not needed for most other subsystems. A second simulation 

was created that utilizes the environment simulation values 

directly and performs simple manipulations to ensure 

behavior similar to the real processors. This includes filtering 

for distance and changing of the type ever so often. 

  

IV. EXPERIMENTAL TESTING AND RESULTS 

The Experimental Testing and Results section describes the 

approaches to testing of subsystems both in water and in the 

simulated environment. Results of the tests are discussed and 

analyzed and any failures and responses therein are also 

mentioned. 

 

1)  Simulation Testing and Results Analysis 

Most of the simulation work has been using the simple 

version of the LiDAR simulation node. This testing was first 

centered around getting the MATLAB Simulink physics 

model to properly move the boat. Then the Guidance 

subsystem went to work to test the High-Level Guidance 

modes of head and speed control, line following, and station 

keeping. Once that work was completed the AI simulations 

started and that has been the bulk of the simulations.  

Simulation testing was consistently conducted to test the 

functionality of different subsystems before on-water testing 

was attempted. In Simulation, the Guidance subsystem’s 

separate controllers were tested until usability was ensured, 

at which point on-water testing was used to perfect the 

response of each controller, this was useful in correcting 

Simulink model inaccuracies as well. The Station Keeping 

control system in simulation shows the ability to maintain 

within 5 meters of the station keeping point in sustained and 

changing winds of up to 200 mph – an extreme case used to 

test controller response. 



[Team ODUSSea] 9 of 10 

 

 

   

 

The processor intensive LiDAR simulation (VLP 16 Sim) 

was heavily used to get an initial implementation of the 

obstacle processing algorithm. This included creating a 

realistic obstacle field using the environment simulation. The 

VLP 16 Sim used the output of the environment simulation 

to populate the GAZEBO world with realistically sized 

buoys and totems. The VLP 16 Sim would output the 

reflection of the simulated LiDAR off of the realistic 

obstacles and return a cloud of points. These points are 

realistic but the VLP 16 Sim was unable to exactly represent 

the same point cloud that would be in the real world. The 

VLP 16 driver node that covets the LiDAR point cloud from 

the LiDAR frame to the region frame relies on the output of 

the GPS IMU subsystem. In the VLP 16 Sim this did not 

include the heave of the boat or any roll or pitch. The result 

is a point cloud that was very stable and in the real world this 

cloud should move over top of the obstacles more. This 

insight was learned much later from the development of the 

VLP 16 Sim, and in the future should be updated to add this 

type of movement. Once the basic processing algorithm was 

completed, recordings of live data from on water testing was 

used.  

During on water testing recordings of the LiDAR and GPS 

IMU output were conducted.  These recordings played an 

important role in the completion of the LiDAR obstacle 

processing algorithm as they were played back in real time 

and slower to allow the fine tuning of the algorithm. These 

playbacks showed how the movement of the boat over the 

waves caused the LiDAR points to fill in the objects making 

it easier to classify them.  

This information gathered during simulation and on water 

recordings for the LiDAR subsystem allowed for the fine 

tuning of the simple simulation as well. The simple 

simulation was tweaked so that obstacles wouldn’t appear in 

the system until the boat was a certain distance away from 

them. This allowed for the AI subsystem to get a better 

simulation of what would happen in the real world.  

The simple simulation has also been utilized to conduct 

competition task implementation testing. So far, 

implementation testing has only been conducted for the 

“Demonstrate Navigation Control” task, as well as circling a 

totem functionality needed for both the “Entrance and Exit 

Gates” as well as the “Find Totems” task. Simulation 

allowed for several different gate configurations as well as 

starting USV positions to be tested, yielding successful 

navigation results through both gates at all configurations 

tested. Testing for the functionality of circling a totem is still 

in progress. The gate totem configuration is utilized, with 

USV attempting to circle the closest totem detected. So far, 

functionality has not been validated, possibly due to logic 

issues concerning the order of points the USV is trying to 

navigate to circle the totem. 

 

2)  On Water Testing and Results Analysis 

Approximately 6 on-water tests were conducted to test 

different subsystem functionalities as well as competition 

task implementation. Testing showed consistent LiDAR 

object detection up to 30 meters. Using temporary RC 

commands tailored to test the guidance subsystem 

independently, the heading and speed, line-following, and 

station-keeping control implementation was fine-tuned and 

validated.  The USV successfully navigated at numerous set 

speed and heading values, as well various line-following 

configurations. Station-keeping control also showed 

satisfactory results at winds up to 11 mph. Lateral movement 

configurations proved to be consistent with simulated results. 

    Testing the LiDAR obstacle processing subsystem on 

water allowed for tuning of the classification algorithm. It 

also showed that there is still some tuning that can be done 

to the GPS IMU subsystem. The Z value from the GPS is 

mostly removed with the assumption that the heave of the 

boat is minimal. It was found that at times this can vary 

greatly and causes problems. This has been mostly filtered 

out by increasing the ground plain filter to 0.25 meters above 

the water. It was also observed that on windy days the waves 

start to make returns and in calm waters the LiDAR can start 

to pick up active fish and the anchor chain for the buoys. This 

on water data also provided the recorded files needed to 

playback and improve the classification algorithm as 

mentioned in the simulation section.  

    On-water testing was also conducted for the “Demonstrate 

Navigation Control” qualifying task. Numerous runs issues 

concerning LiDAR detection of the second gate were 

revealed, requiring a time parameter increase while waiting 

on totem detection. Course over-correction while going 

through the second gate was also observed necessitating 

intermediate course calculation. After the changes were 

implemented, the USV effectively navigated through the set 

of gates using numerous different starting positions and gate 

orientations. 
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VII. APPENDIX – CHALLENGE TASK BREAKDOWN 

This appendix shows the mapping that was done from the 

Challenge Tasks to the subsystem requirements.    
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