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Abstract—This paper provides an overview of the hardware
and software systems developed for Bruce, the Queensland
University of Technology’s Autonomous Surface Vehicle (ASV)
for entry in the 2018 Maritime RobotX Challenge. Bruce is con-
sidered a system-of-systems platform consisting of the ASV itself,
a self-contained vision-based Autonomous Underwater Vehicle
(AUV), and an automated vision-based racquet ball launcher.
Bruce’s software and hardware architecture builds on 4 years of
development from the 2014 and 2016 RobotX Challenges. Key
hardware upgrades include integrated bow thrusters and control
system, a refined safety system, and an automated AUV deploy-
ment and retrieval mechanism. Key software upgrades include a
fused LiDAR and vision object detection and classification system,
a vision system for underwater ring detection, improved vision
system for the ball launcher, and a new mission architecture
with task optimizer. To facilitate software development and
offline testing, a high-fidelity simulation model developed in
2016 was extensively used. The ASV’s control, mapping, and
task-specific algorithms were evaluated both in simulation and
through field experiments. Results demonstrating capabilities as
well as discussions on lessons learnt are also presented.

I. INTRODUCTION

The Queensland University of Technology (QUT) presents
our system-of-systems Autonomous Marine System (AMS)
for competing in the 2018 Maritime RobotX Challenge. The
objective of the 2018 Challenge compared to previous Chal-
lenges has been to increase the level of autonomy on-board
the ASV though linking information gained during missions
to complete complex tasks [1] as well as integrate multiple
robotic platforms for new tasks. Whilst this increases the
overall complexity of completing the tasks, it has provided a
unique opportunity to explore ideas for solving this problem.

The Maritime RobotX Challenge requires each team use a
standardized base platform, the WAM-V developed by Marine
Advanced Research Inc. The teams can then configure the
platform as they please by adding sensors, computing, power
and propulsion within the Challenge guidelines [2]. In 2018,
the competition also introduced tasks that encourage a system-
of-systems approach to extend the functionality of the ASV.
This approach was taken by TeamQUT with the development
of two systems for the ”Underwater Ring Recovery” and
”Detect and Deliver” tasks which were integrated into the
higher level task execution software.

The remainder of the paper is structured as follows: Section
II provides an overview of the design strategy behind the
ASV with Section III outlining the multiple hardware systems,
upgrades and software components. Section IV describes the
obstacle detection and classification approach with Section
VI presenting the strategy for the underwater ring recovery

Fig. 1: Bruce – The Queensland University of Technology’s
Autonomous Marine System (AMS) for the 2018 Maritime
RobotX Challenge.

task. Section VII presents the mission planning strategy with
Section X providing concluding remarks.

II. DESIGN STRATEGY

The team’s development strategy for the 2018 Maritime
RobotX Challenge was guided by the experience and knowl-
edge sharing from team alumni who competed in the 2014 and
2016 challenges, in addition to the new challenge task descrip-
tions [1]. The team reflected on the design (both hardware and
software) and made recommendations on what worked and
what did not and exploited previous software development via
the teams code repository and the 2016 Autonomous Marine
Vehicle Simulator [3].

Based on these reflections and task requirements, the bulk
of the effort was particularly focused on 3 key software and 2
key hardware areas. The three primary focus areas for software
development were; (1) The need for a more integrated obstacle
detection and classification system, (2) the need for a robust
underwater vision system, and (3) the need for a revised
dynamic task allocation mission framework that optimizes
points, time and autonomous system capabilities. The two
primary hardware focus areas were; (1) the need to integrate
the autonomous underwater vehicle, and (2) the need for bow
thrusters to aid in low speed manoeuvring and station keeping.
The following sections outline the results of these design
considerations in preparation for the 2018 Maritime RobotX
Challenge.
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Fig. 2: The complete Autonomous Marine System (AMS)
showing the ASV (aka Bruce), the AUV (aka Thunder4) and
the racquetball launcher (aka Gusto).

III. VEHICLE DESIGN

This section provides an overview of the hardware and
software design review, considerations and lessons learnt in
preparing the Bruce ASV and associated systems for the 2018
Maritime RobotX Challenge.

A. Hardware Overview

In 2018, Bruce underwent a significant design review based
on the lessons learnt from previous challenges, as well as the
need to integrate the Autonomous Underwater Vehicle and
racquetball launcher. The resulting configuration is shown in
Figure 2. The primary lessons learnt related to; (1) the need
for bow thrusters to improve docking and station keeping
during strong winds, (2) the need for robust wiring and sensor
integration, (3) more robust power management systems to
increase shoreline operational time, and (4) the need to for a
modular mission/task management system.

1) Physical Structure: The primary electronics systems
reside in a custom frame attached to the underside of the
WAM-V payload tray. On Bruce, all the electronics boxes are
mounted on sliding trays which lock in place. The sliding trays
were inspired by years of field work and the difficulties of
assembly, mounting and accessing hardware to the top of the
payload tray. The advantages of this approach are the trays al-
low beach access without climbing over the vessel, protection
of the computers and batteries from rain and sun, and frees up
the top for other tasks (e.g. platform for launching an AUV or
UAV, solar panels, science payloads). The removable sensor
frame provides a greater mounting height for the perception
and navigation sensors described in the following sections.

Two key structural upgrades were integrated onto Bruce
in 2018. The first was a launch and recovery system for the
AUV (see Section III-C). The second was a revised retractable
bow thruster assembly which also duals as a mount for the
hydrophones (see Section III-A3).

2) Sensors: The primary navigation sensor for Bruce is
a Novatel FLEX6 GPS providing position updates at 20Hz.
The GPS is capable of providing heading angle so a low-end
magnetic flux compass was selected for providing a redundant
compass/heading angle (9DOF Razor Inertial Measurement
System). In addition to heading angle, this sensor provides
roll, pitch and angular rates which are all used for navigation
and mapping.

The perception sensors provide most of the fundamental
information for executing the Challenge tasks. They also
provide the situational awareness for navigation and obstacle
avoidance. On the sensor frame, a Velodyne HDL-32E LiDAR
provides the fundamental range information. This sensor is
positioned high to give the greatest situational awareness of
the course. Many competition tasks require computer vision to
interpret parts of the environment (e.g. symbols, buoy colors).
Therefore, the sensor frame also has two Logitech HD 720p
USB web cameras to allow real-time on-board processing. To
measure the underwater acoustic environment, Bruce has two
Aquarian Audio hydrophones connected to a Roland Quad-
Capture USB Audio Interface Device capable of sampling at
192 kHz.

A Vaisala WTX-520 weather station on the ASV provides
real-time wind-speed and direction data (at 1 Hz) to the on-
board control system. Bruce has a range of current and voltage
sensors for monitoring the motors and batteries which provides
real-time feedback to the main software safety system. Mon-
itoring these variables is critical for battery management and
detecting any system fault.

3) Propulsion and Power systems: There are two propul-
sion systems for Bruce; The primary manoeuvring control is
provided by two fixed 80lb 24V electric trolling motors that
provide forward and differential steering motion. However, in
2016 it was found that this configuration alone was unable
to successfully perform docking manoeuvres with strong side
winds. Therefore, Bruce has been upgraded with the addition
of two small bow thrusters on the fore section of each pontoon
to aid in heading control and station keep.

These bow thrusters (Blue Robotics T200 thrusters) are
fixed in position and only provide lateral control. As such
a custom software controller was developed to determine the
required control allocation to achieve static position hold as
well as forward motion. Whilst many teams opt for steerable
thrusters or mounted at 45 Degrees from forward to achieve
holonomic control [4], [5], our configuration was chosen to
maximise forward thrust and speed for normal operation and to
reduce operational complexity which may be potential points
of failure.

Bruce has two on-board batteries with the AUV carrying
its own power system. A larger battery (Torqeedo 26-104) is
used exclusively for powering the propulsion system (24V for
the trolling motors and via a 24-12 DC converter for the bow
thrusters) and are connected to the vessels safety management
system (see Section III-A4). A smaller 12V 50Ahr LiPFe
battery is used for powering the computers and sensors. A
significant challenge in 2016 was managing power whilst on
the shore for software debugging without being connected to
mains power. As such, the computer battery is connected to
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Fig. 3: The custom safety control board developed for Bruce.
This board monitors all wired and wireless emergency stop
buttons, manages RC and computer demands to the motor
controller, and drives the status light system.

two 40W solar panels attached on the top of the payload tray
to maintain battery capacity during a working day when under
low-load (development) conditions.

4) Safety Management System: Operational safety of the
ASV, AUV and ball launcher are paramount considerations in
the overall system design. In 2018, the existing safety control
system was redesigned and integrated onto a single board
to improve overall operational robustness. Figure 3 shows
the new safety system board. This board monitors all the E-
Stops and manages all power to the motor relays and controls
the mandatory status lighting system. A separately powered
wireless E-Stop system is built onto the safety board. The
board interfaces with a standard RC control handset to provide
manual control capabilities and to trigger autonomous control.
When in autonomous mode, the safety board directs motor
control inputs to the motor controller from the computer.

B. Gusto: Automated Racquetball Launcher

The ’Detect and Deliver’ task requires teams to first detect
a target and then to deliver a payload (racquetball) within
the target area. In 2016, TeamQUT developed Gusto a self-
contained visual-servoing electric ball launcher. Gusto delivers
racquetballs by feeding the ball through two horizontally
opposed counter-rotating wheels. A feeding mechanism can
launch the balls at a rate of one ball per second. Gusto is
mounted towards the front of the upper deck of the ASV (see
Figure III-B) and is connected to Bruces computer via USB.

During 2018, Gusto’s entire low-level microcontroller soft-
ware and ROS node were completely redesigned to improve
vision-based window detection and tracking performance,
safety and overall reliability. Additionally, a weather shied was
created to allow operation in rainy conditions. The result is a
robust system which demonstrates consistent delivery of balls
into the smaller target area.

C. Thunder4: Autonomous Underwater Vehicle

A new task, the ”Underwater Ring Recovery” task was
introduced for the 2018 Maritime RobotX Challenge. This task

Fig. 4: Gusto – the automated racquetball launcher for the
”Detect and Deliver” task.

Fig. 5: The Autonomous Underwater Vehicle (AUV), called
Thunder4, used for the underwater ring challenge. This is a
tethered hybrid (ROV/AUV) version of the RangerBot AUV.

requires the retrieval of yellow polypropylene rings suspended
from an underwater PVC structure. TeamQUT’s approach to
completing this challenge is to use an Autonomous Under-
water Vehicle (AUV) called Thunder4 as shown in Figure 5.
Thunder4 is a modified RangerBot AUV developed in collab-
oration between the Queensland University of Technology and
the Great Barrier Reef Foundation. The AUVs sensors consist
of two calibrated stereo camera pairs (forward and downward
looking), an IMU, pressure sensor and a GPS. Two computing
systems (Nvidia TX2 and a small embedded CPU) process
all sensor streams and execute missions. It has six thrusters
allowing full 6-DOF motion control and two on-board batteries
giving an endurance of over 6 hours.

Whilst Thunder4 is capable of autonomous untethered oper-
ations, for the RobotX Challenge a custom tether modification
has been made to the base platform to allow information
sharing to the ASV using ROS. The tether also acts as an
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Fig. 6: The Thunder4 AUV in the lowered position ready to
drive out of the lifting cradle.

emergency stop system which when disconnected triggers
motor power shutdown. To facilitate launch and recovery of
the AUV including tether management, a custom scissor lift
mechanism was installed on Bruce (see Figure 6). In order
to collect the rings from the subsurface structure, a passive
latching mechanism is attached to the AUV which catches
the ring when driven towards it. Once latched the AUV then
reverses to release the ring from the structure.

D. Software Architecture

The software architecture developed for Bruce is shown in
Figure 7. It is an event driven, cross-platform structure built
on the Robotic Operating System (ROS) [6]. Other popular
frameworks for marine vessels exist, such as MOOS [7],
however, cost-benefit-risk analysis led to ROS being chosen as
it provided seamless integration and extension of the individual
software modules representing sensing, localization, planning,
and control as well as the different robotic platforms (e.g.
Thunder4). It also facilitates more rapid software development
within the project team capabilities as it caters to the program-
ming languages preferred by the individual team members
(C++, Python, Java, and MatlabTM).

The software platform executes actions in parallel and
asynchronously. The individual sensor modules provide data
asynchronously to the state estimator and image, laser and
acoustic classifiers. The State Estimator maintains the pose
of the ASV for localization and control. The State Estimator,
laser, and vision classifiers (for buoys) all feed the Map Man-
ager which maintains an up-to-date, globally referenced map
of real and virtual obstacles as the ASV traverses the courses.
The Path Planner produces viable (efficient and obstacle free)
trajectories for the ASV based on the obstacle map and the
desired waypoints provided by the Mission/Task Optimizer
(see Section VII).

The execution of the missions is performed by the Mis-
sion/Task Optimizer block. This was completely rewritten in
2018 to facilitate a new mission structure allowing dynamic

Fig. 7: Overview of the 2018 software architecture for Bruce.

execution of sub-tasks within main tasks for achieving high-
level objectives and overall system function. The decision
support structure within the state machines is parameterized
allowing the controller to retry, abort or skip specific tasks, or
components therein. The Mission Controller also determines
the required motor control inputs sent to the Motor Controller
for driving both the primary and bow propulsion systems.

To facilitate load management on the primary CPU (Intel
Core i7-4790K, 4.00GHz), particularly for computationally
expensive computer vision tasks, the Mission Controller can
put each classifier block into an idle state until required.
The Thunder4 AUV has two independent computing systems
(see Section III-C) and communicates via ROS to Bruce
using the multi-master library [8]. Finally, the Mission Con-
troller communicates with the Messaging System block which
provides the task-specific messaging interface to the remote
Judges display and the technical directors network. The Sensor
& Power Systems Health Monitor provides a system wide
assessment of the operational state of the ASV and AUV
including monitoring motor and battery currents and voltages,
and individual sensor performance with the ability to restart
modules when necessary.

IV. MAPPING, PATH PLANNING AND OBSTACLE
CLASSIFICATION

This section describes the 2018 approach to obstacle de-
tection and classification to increase the robustness of task
execution.

A. Obstacle Detection

In 2016 we based our obstacle detection and mapping
approach on a probabilistic Occupancy Map [9]. This method
is fast and adapted to the computing hardware available on
the ASV. However, we encountered issues with false obstacles
generated by ripples on the water. Our previous attempt to
reduce false obstacles was based on height and intensity
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thresholds but was only partially successful. In 2018 we
decided to keep the Occupancy Map implementation, but we
overhauled our obstacle detection approach.

Our new approach is based on work by Suger et al. [10],
where we analyze the raw Lidar points to identify which points
are hitting a solid obstacle (e.g. competition structures) and
which points are from false obstacles (e.g. water ripples). For
each Lidar point, we compute the stepHeight and incline angle.
The stepHeight of a particular LIDAR point is the vertical dis-
tance between the two closest neighboring points of the same
azimuth angle, while the incline angle is calculated between
the line that connect those two points and the horizontal plane
of the LIDAR. A LIDAR point is considered as hitting an
obstacle if both stepHeight and incline values are greater than
respective thresholds. This obstacle detection step is key to
reject spurious outliers from ripples in the water but reliably
detect competition structures at various distances. Following
this process, each LIDAR point hitting an obstacle is integrated
into the probabilistic Obstacle map using Bayes update rule.
This new mapping process is described in depth in our latest
journal paper [11].

Finally, a traversability estimation step is performed to
translate the obstacle map into a cost map of same size and
resolution. Any cell of the obstacle map with a probability
greater than a defined threshold is considered non-traversable
(high cost) in the traversability map so that a path cannot be
planned through this cell. A safety disk is added around non-
traversable map cells to promote the planning of safer paths.

B. Path Planner

The Path Planner is used by the Mission Controller to
provide a safe path to any position on the map from the current
position of the boat. We use a tree search approach in which
each of the map cell is a node. The algorithm implemented
is a version of the well-known A-star algorithm [12]. This
algorithm is optimal (will return the best path) and complete
(guaranteed to find a path if it exists) while maintaining a
very high performance. Other algorithms were considered,
notably D-star [13] which has the same search properties as
A-star and is faster to execute but is more computationally
expensive. As the boat dynamics are relatively slow, a new
path is only needed every second on average. With our A-star
implementation being able to produce a path across the entire
course in less than one seconds, it was chosen to conserve
computational power.

The two main features to define for the A-star algorithm are
the cost function, and the links between the tree nodes (map
cells). A-star uses a cost function to guide its search while
exploring the map cells, the definition of this cost function is
crucial and defines the behavior of the search. The cost of a
cell reflects the difficulty for the boat to reach that cell. The
algorithm explores the cells with the lowest cost first which
influences the search speed and the path behavior. The links
between the different tree nodes (map cells) indicate which
cells of the map are available from any particular cell. These
links play a very important role in reflecting the boat dynamics
to produce a realistic path for the boat to follow (e.g. a boat

cannot do a sharp turn at high speed). Therefore, a dynamic
model of the boat was built and improved over time using
different GPS trajectory data from field trials. This model
accounts for the current boat speed and proposes different
turning behaviors. It also incorporates a model of the boat
acceleration and deceleration capabilities. This path planning
implementation allows Bruce to safely navigate on the course
and through challenging obstacle fields.

C. Obstacle Classification

Our obstacle classification framework is based on both
structural and appearance features extracted from LIDAR data.
LIDAR measurements are accurate and robust to ambient
lighting conditions and so are the features derived from them,
making them especially useful in outdoor scenarios.

From the Obstacle Map we extract a list of obstacles
by grouping adjacent occupied cells. For each obstacle we
compute the following features based on the information in
the group of cells that it represents:

• LIDAR intensity mean
• Maximum Height
• Maximum Width

LIDAR intensity mean is an appearance feature computed
statistically from the cells belonging to each obstacle. This
feature is used to differentiate objects of different materials
(e.g. wooden structure and metal structure will have differ-
ent LIDAR intensity returns). Structural features (Maximum
height, and maximum width) are also computed from Velodyne
data to obtain a sense of proportion of the elements and used
to make the distinction between obstacles of different physical
shapes and sizes.

We perform classification on the LIDAR features using
the Random Forest algorithm introduced by Breiman [14].
This classifier is fast to execute and was used successfully
in multiple laser-based classification cases [15], [10]. The
classifier is trained using hand-labeled LIDAR data recorded
during previous RobotX competitions. The different objects
of the competitions are split into four classes: Round Buoy,
Straight Buoy, Light Tower structure, Detect and Deliver/Dock
structure. These classes were chosen to be informative to
the mission planner to complete the competition tasks while
being recognizable solely from LIDAR data. Fig 8 depicts an
example of a scene from the obstacle field task with buoys
and totems correctly identified.

V. VISION

A robust vision system is required to accurately detect
the properties of the coarse elements such as the color of
all the buoys, color and shape of the symbols/placards in
the detect and deliver as well as the docking tasks, and the
color sequence of the light tower in the scan the code task.
The following sections provide a brief overview of the vision
systems developed for these tasks.

A. Buoy Color Detection

Whilst the buoys are able to be detected by the LIDAR, their
color is determined by the vision system. Furthermore, due to
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Fig. 8: Predicted obstacle types superimposed on the obstacle
map and raw LIDAR points. Cylinders are totems, spheres are
obstacle field buoys, and squares are unknown.

the black and shiny nature of the obstacle buoys, the LIDAR
has difficulties detecting them and so the vision system is also
used to identify these buoys.

Due to unpredictable changes in lighting conditions
throughout the day over the course of the challenge (see
top row of Fig. 9), a more traditional approach based on
manually selected image thresholds is not viable. Instead, a
water detection system is proposed whereby the water was
identified and removed with and the remaining objects tested
for color and shape. The water is isolated by apply a Gaussian
filter to the image, followed by Canny edge detection. The
obstacles and buoys produced edges, allowing identification
of areas of water as shown in the second row of Fig. 9. The
water can then be removed by applying a color threshold.
The resulting blobs are then filtered using size and ratio. The
buoys were separated from the obstacles because they were
taller and then tested for color. The HSV color space is used
for determining the color of the buoys. For each blob, their
mean hue was compared to hue values for red, green, blue, and
yellow and the color of the buoy was selected as the closest
match, with the difference used to calculate a confidence
value. The resulting bounding box, color, and confidence was
provided to the mapping system as shown in the example in
Fig. 10.

B. Symbol Detection and Identification

The symbol detection and identification algorithm was built
on the robust code-based system developed for the 2016 Chal-
lenge [16]. The OpenCV and ROS-based module is capable
of detecting three colors (red, green, blue) and three shapes
(circle, triangle, cruciform). It was updated for improved scale
invariance (allows detection at greater distance) as well as
improved robustness to symbol orientation (e.g. if the triangle
was sideways facing or upside down). In addition, it reports
back the confidence score for each detected for use in mission
execution. The algorithm performs well in practice and is
capable of detecting all nine symbol combinations in a single
image.

Fig. 9: An example showing work flow for vision-based buoy
detection in both sun (left column) and shade conditions (right
column). Top row: original images; Middle Row: results after
Gaussian filter and Canny Edge detection, Lower Row: the
resulting threshold image colored in HSV format.

Fig. 10: An example image showing the output from the
vision-classification scheme highlighting the region of interest,
its predicted color and the associated confidence.
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C. Light Tower Sequence

Our approach for Scan the Code task is based on work
from both the 2014 and 2016 challenges. The computer vision
algorithm was used for detecting the sequence consists of two
stages; (1) LED panel segmentation and color identification,
and (2) a confidence based sequence algorithm. To segment
the panel color from the rest of the image, a custom pro-
cess built on OpenCV was developed for precise filtering of
features based on size, aspect ratio, angle and circularity. An
adaptive thresholding approach using parameters selected from
experimental data allows robust detection in a wide range of
lighting conditions. In 2018, the yellow color was removed by
the judges, therefore, the system was reverted to only detect
red, green and blue LEDs.

Following LED color detection a custom sequence algo-
rithm is used to build temporal confidence in the color se-
quence. Once the confidence exceeds a threshold, the sequence
is reported to the judges display.

D. Pinger Localisation

The method for pinger detection implemented in 2018 is
identical to that of 2016. Here the signals from two Aquarian
Audio hydrophones at fixed spacing (across the fore hull
section) are recorded and a custom processing algorithm used
to calculate the Time-Difference-of-Arrival (TDOA). Using the
TDOA, the angle to a pinger can be determined. However,
as the detected angle has two possible solutions (positive
and negative about an axis through the two hydrophones),
information from the Obstacle Identifier is to compare the
TDOA calculated angle and ray trace to the buoys to check
the validity of the solution. The temporal confidence in the
solution is calculated and used by the mission planner.

Figure 11 illustrates the signal processing from one hy-
drophone on data collected at the 2016 RobotX Challenge
showing it can robustly identify the acousitc pinger signal from
within the raw input.

VI. UNDERWATER RING RECOVERY

A significant vision system development for 2018 was for
the detection of the rings in the underwater task. Our approach
is to use the Thunder4 AUV which has a forward looking
color stereo pair to locate the PVC frame and identify rings
to allow visual-servoing. The following sections describe the
image processing pipeline and general state-machine for task
execution.

A. Underwater Ring Identification

The underwater vision system has been designed with
a combination of deep learning and classical visual image
processing techniques. There are a number of challenges
surrounding the use of robotic vision methods in underwater
scenes; many of which arise from degraded image quality.
Pre-processing image enhancement methods offer improved
performance to vision systems, typically by reducing haze,
enhancing contrast, or normalising colours. A deep learning-
based image enhancement method was found to exhibit com-
petitive performance when applied to challenging underwater

Fig. 11: Example of the raw and filtered recordings from the a
single hydrophone of a pinger at 32 kHz taken during RobotX
2016 in Hawaii.

(a) Raw image. (b) Enhanced image.

Fig. 12: Figure 12a shows an example raw image of the
underwater rings and frame highlighting the reduced visibility
(extracted from video content published by RoboNation [18]).
Figure 12b shows the image after processing through the
GAN-based image enhancement module.

scenes. Thunder4’s vision system uses recent research by Fab-
bri et. al. [17] surrounding the use of a generative adversarial
network (GAN) to enhance the colour and features present in
underwater images. An example of this pre-processing stage of
the vision pipeline are demonstrated in Figure 12, where raw
image data such as Figure 12a is passed into the pre-trained
GAN, producing an enhanced image as shown in Figure 12b.

The enhanced images are then converted to the HSV
colourspace, where binary thresholding methods are applied
to segment the image into regions of interest. An example
output of this stage of the process is shown in Figure 13.
To reduce the noise indicated in Figure 13, Gaussian blurring
and morphological filters were applied to the thresholded
image. The final analysis isolated the rings by using known
prior information, (e.g. that the rings are typically found
at the horizontal extremities of the detected structure). This
method allowed estimates of the location of a given ring to
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Fig. 13: The underwater ring segmentation process required
multiple iterations. The red pole was not able to be directly
segmented out without losing the rings, so is removed using
binary subtraction.

Fig. 14: An example output from the Thunder4 vision system.
Rings are segmented (green lines) using binary object masks
created by classic thresholding methods. Note the estimated
ring shapes are not exact due to the morphological operations
during the segmentation removing some fidelity.

be estimated either directly, or through inference based on
the detection of a corresponding horizontal pole. Figure 13
demonstrates both methods, where the rings on the green pole
are segmented directly, while the rings on the red pole had
to be segmented indirectly by examining and subsequently
removing the red pole. The resultant ring detection from the
Thunder4 vision system is demonstrated in Figure 14.

B. Underwater Ring Collection

The other major design component for the underwater ring
recovery task is the AUV’s state machine. Evaluation of
the low-level movement requirements for Thunder4 provided

Fig. 15: A high-level representation of the Thunder4 AUV
state machine system. Error states and non-critical states have
been omitted, and linked states combined for presentation
purposes.

insight into the potential states which the robot could be in at
any given time. Due to the requirement for the AUV to remain
tethered to the WAM-V surface vehicle at all times, Thunder4
required an additional set of autonomy states relating to
winching requirements. Figure 15 presents an overview of
our state machine system diagram, simplified for presentation
purposes, with error states omitted.

VII. AUTONOMOUS MISSION EXECUTION

In 2018, the entire mission execution stack was rewritten
to allow sub-tasks to be dynamically executed within main
mission tasks. This has the benefit of simplifying the task
primitives (building blocks) allowing easier debugging and
complex task creation. Learning’s and code from 2016 was
used to create the required behaviours, with new functions
added to each class including individual tune-able cost func-
tions for the allocation optimizer.

A. Behavior-based Architecture of Bruce

Behavior based robotics is a robot control paradigm which
is represented by internal states [19]. Each state is independent
from other states while information can be passed between the
states. Each state can contain sub-states and the outcome of a
single state decides which state is triggered next. States can be
encapsulated in sub-states and thereby allowing a hierarchical
implementation of complex behaviors. Whilst a number of
common architectures exist within ROS (e.g. FlexBE [20]
and SMACH [21]), for the RobotX Challenge we partially
modelled our architecture on FlexBE in which each state has
an event loop which allows to modify the execution of each
state dynamically. Each state has several hooks which are
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called depending on the event. These events are: start, enter,
stop, exit, pause, resume. This is mandatory for the RobotX
Challenge because we may wish take over control of Bruce any
time, including the option of starting, stopping or cancelling
the current task.

The current behaviours (control primitives) on Bruce in-
clude: (1) waypoint, (2) station-keep, (3) launch and recover,
(4) dock, (5) pinger locate, (6) standoff target, and (7) circle
buoy. In 2016, a new behavior explorer was created and
repurposed for 2018. The purpose of the explorer behavior
is to search the course for any missing information that may
be needed to compete a specific task/s and is called by the
Task Scheduler when required.

B. Mission Task Optimizer and Decision Making

A core component of the Mission Controller is the Task
Optimizer. The Task Scheduler is composed of a mission
data initialiser, a mission data recorder, a task information
dependency map, and the task scheduler/decision maker. At
the start of a mission, the mission data initialiser reads a
configuration file that lists all known task-related information
such as task scoring and the on-the-day details (e.g. the
Acoustic Pinger frequencies) in addition to flags for all of
the information which remains unknown at the start of the
mission. As information is discovered during the execution
of a mission, it is both updated in-memory and written to
a parallel date-stamped mission data file by the mission data
recorder. The recorded files can be used for restarting missions
if required.

The task optimizer is responsible for determining the task
sequence and is actioned at the start of each run and during
the run after completion of each task. The task sequence
is based on the information required by each specific task
and the information currently known, the pay-off (maximum
anticipated points that can be scored) and risk associated
with executing a particular task, the distance costs between
tasks, and the remaining time available on the course. As this
information is initially incomplete, the task scheduler depends
on updates from the information discovery component as the
mission progresses. The next task to complete is determined
by a voting in which each currently incomplete task votes for
the task(s) which can provide it with information. Given a set
of n tasks ti...n, we define the task score si, task information
dependency dij of task ti on task tj , task required information
qi, and the estimated risk factor ri. The task tbest to schedule
next is determined by minimizing the predicted overall run
cost (maximum score). If this cost is above a threshold, the
explorer task is executed. The task information dependencies
are read from a configuration file at mission initialization, with
a flag a flag that allows the tuple to be retained but disabled
for rapid configuration on the day.

VIII. AUTONOMOUS MARINE SURFACE VESSEL
SIMULATOR

In 2016 we developed a high-fidelity simulator to assist with
the development of the different software components. This
was upgraded during 2018 and made open-source [3]. This was

Fig. 16: Screen image from the Autonomous Marine Surface
Vessel Simulator with the 2018 Dock and Detect and Deliver
task element.

a crucial advantage with minimal in-water testing opportunities
and no early access to the competition structures. Since the last
competition, our simulator was improved with better physics
models to obtain more realistic movements of the boat, see
journal paper [22]. The new competition structures were also
added such as the single detect and deliver/dock structure.

The simulator includes a high-fidelity camera, a LIDAR
sensor(Velodyne HDL-32E), IMU and GPS sensors, as well as
a buoyancy and physics simulation to integrate the motors. In
order to realistically model the effects of reflection and refrac-
tion for image simulation, custom rendering techniques and
graphics shaders were implemented using the programmable
pipeline of OpenGL 3.0. The fidelity and performance of the
simulator was benchmarked against the existing best available
alternative simulator, V-Rep, to show that the Autonomous
Marine Surface Vessel Simulator has better performance and
fidelity when simulating marine environments.

This simulator has been used to provide a method of testing
the autonomous subsystems on an entire simulated course.
Fig. 16 shows an example image of the ASV in simulation
going from the obstacle field to the 2018 docking task.

IX. OPERATOR CONTROL SYSTEM

In order to convey mission and status information of Bruce
and the associated systems, a custom operator control sys-
tem was developed. This system allows rapid assessment of
behaviours and debugging. Figure 17 shows example shots of
the two screens. The top image shows the task summary page,
with the lower image showing the ASV situational awareness
page.

X. CONCLUSION

This paper has presented Queensland University of Tech-
nology’s autonomous system solution for the 2018 Maritime
RobotX Challenge. The complete solution is a system-of-
system platform comprising of Bruce (ASV), Thunder4 (AUV)
and Gusto (autonomous racquetball launcher). For 2018, key
hardware upgrades included an integrated bow thruster system,
a refined safety system, and an automated AUV deployment
and retrieval mechanism. Key software upgrades include a
fused LiDAR and vision object detection and classification
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Fig. 17: An example image of the Task Summary page (top)
and ASV Situational Awareness page of the Operator Control
System.

system, a vision system for underwater ring detection, im-
proved vision system for the ball launcher, and a new mission
architecture with task optimizer. The strategy and associated
innovations have been successfully evaluated through simu-
lation and on-water testing giving confidence for a strong
performance at the 2018 Maritime RobotX Challenge.
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